计算机应用与软件
計算機應用與軟件
계산궤응용여연건
COMPUTER APPLICATIONS AND SOFTWARE
2013年
11期
60-63,160
,共5页
李国祥%夏国恩%高荣%李毅
李國祥%夏國恩%高榮%李毅
리국상%하국은%고영%리의
粗糙集%属性约简%粒子群优化%支持向量机
粗糙集%屬性約簡%粒子群優化%支持嚮量機
조조집%속성약간%입자군우화%지지향량궤
Rough set%Attribute reduction%Particle swarm optimisation ( PSO)%Support vector machine ( SVM)
区域物流需求的定量分析对于各种区域物流发展政策、区域物流规划有着重大意义。以广东、上海、广西三个地区为例,采集大量历史数据,构建完整的区域物流需求影响因素指标体系,利用粗糙集理论提取指标体系中的重要指标特征,从而构建PSO-SVM的物流预测模型。仿真结果表明,通过约简所得的不同地区的物流影响因子能够有效地代表非线性的物流数据特征,避免定性分析所带来的影响因子选择的主观性,以此构建的PSO-SVM模型能够准确有效地预测物流需求量。
區域物流需求的定量分析對于各種區域物流髮展政策、區域物流規劃有著重大意義。以廣東、上海、廣西三箇地區為例,採集大量歷史數據,構建完整的區域物流需求影響因素指標體繫,利用粗糙集理論提取指標體繫中的重要指標特徵,從而構建PSO-SVM的物流預測模型。倣真結果錶明,通過約簡所得的不同地區的物流影響因子能夠有效地代錶非線性的物流數據特徵,避免定性分析所帶來的影響因子選擇的主觀性,以此構建的PSO-SVM模型能夠準確有效地預測物流需求量。
구역물류수구적정량분석대우각충구역물류발전정책、구역물류규화유착중대의의。이엄동、상해、엄서삼개지구위례,채집대량역사수거,구건완정적구역물류수구영향인소지표체계,이용조조집이론제취지표체계중적중요지표특정,종이구건PSO-SVM적물류예측모형。방진결과표명,통과약간소득적불동지구적물류영향인자능구유효지대표비선성적물류수거특정,피면정성분석소대래적영향인자선택적주관성,이차구건적PSO-SVM모형능구준학유효지예측물류수구량。
Quantitative analysis of regional logistics demand has great significance for regional logistics development policy and regional logistics planning.In this paper, taking three regions of Guangdong , Shanghai, Guangxi as the example, we collect a large number historical data and build a complete influencing factors index system for regional logistics demand .We use rough set theory to extract important characteristics in the index system so as to build the PSO-SVM logistics forecasting model .Simulation results show that the logistics influencing factors of different regions derived from reduction can effectively represent the nonlinear characteristics of logistics data and avoid the subjectivity in influencing factors selection brought by the qualitative analysis , and the PSO-SVM model constructed in this way can accurately and effectively predict the logistics demand .