光谱学与光谱分析
光譜學與光譜分析
광보학여광보분석
SPECTROSCOPY AND SPECTRAL ANALYSIS
2013年
12期
3372-3376
,共5页
孙俊%金夏明%毛罕平%武小红%唐凯%张晓东
孫俊%金夏明%毛罕平%武小紅%唐凱%張曉東
손준%금하명%모한평%무소홍%당개%장효동
高光谱%生菜叶片氮素水平%KNN%SVM%Adaboost
高光譜%生菜葉片氮素水平%KNN%SVM%Adaboost
고광보%생채협편담소수평%KNN%SVM%Adaboost
Hyperspectrum%Lettuce leaf nitrogen level%KNN%SVM%Adaboost
为了便于经济合理的生菜施肥,研究一种生菜叶片氮素水平智能鉴别方法。在温室大棚内无土栽培不同氮素水平的生菜样本,在特定生育期,采集各类氮素水平生菜样本,利用FieldSpec R○3型光谱仪采集生菜叶片高光谱数据。由于原始高光谱数据存在噪声且冗余性强,利用标准归一化(SNV)对原始高光谱数据进行降噪处理,再利用主成分分析方法(PCA)对高光谱数据进行特征提取。分别利用K最近邻(KNN)和支持向量机(SVM )对降维后的光谱数据进行分类研究,由于自适应提升法(Adaboost)能提升弱分类器分类性能,将其分别引入到KNN和SVM 两种分类器中,提出了Adaboost-KNN和Adaboost-SVM 两种集成分类算法。分别利用上述四种分类算法对相同测试样本数据进行分类鉴别。结果表明,KNN ,SVM ,Ada-boost-KNN和Adaboost-SVM四种算法的分类正确率分别为74.68%,87.34%,100%和100%,其中所提出的Adaboost-KNN与Adaboost-SVM分类效果都很好,且Adaboost-SVM分类算法的稳定性最好。因此, Adaboost-SVM算法适合作为基于高光谱的生菜氮素水平鉴别的建模方法,并且也为其他作物营养元素无损检测提供了一种新的方法。
為瞭便于經濟閤理的生菜施肥,研究一種生菜葉片氮素水平智能鑒彆方法。在溫室大棚內無土栽培不同氮素水平的生菜樣本,在特定生育期,採集各類氮素水平生菜樣本,利用FieldSpec R○3型光譜儀採集生菜葉片高光譜數據。由于原始高光譜數據存在譟聲且冗餘性彊,利用標準歸一化(SNV)對原始高光譜數據進行降譟處理,再利用主成分分析方法(PCA)對高光譜數據進行特徵提取。分彆利用K最近鄰(KNN)和支持嚮量機(SVM )對降維後的光譜數據進行分類研究,由于自適應提升法(Adaboost)能提升弱分類器分類性能,將其分彆引入到KNN和SVM 兩種分類器中,提齣瞭Adaboost-KNN和Adaboost-SVM 兩種集成分類算法。分彆利用上述四種分類算法對相同測試樣本數據進行分類鑒彆。結果錶明,KNN ,SVM ,Ada-boost-KNN和Adaboost-SVM四種算法的分類正確率分彆為74.68%,87.34%,100%和100%,其中所提齣的Adaboost-KNN與Adaboost-SVM分類效果都很好,且Adaboost-SVM分類算法的穩定性最好。因此, Adaboost-SVM算法適閤作為基于高光譜的生菜氮素水平鑒彆的建模方法,併且也為其他作物營養元素無損檢測提供瞭一種新的方法。
위료편우경제합리적생채시비,연구일충생채협편담소수평지능감별방법。재온실대붕내무토재배불동담소수평적생채양본,재특정생육기,채집각류담소수평생채양본,이용FieldSpec R○3형광보의채집생채협편고광보수거。유우원시고광보수거존재조성차용여성강,이용표준귀일화(SNV)대원시고광보수거진행강조처리,재이용주성분분석방법(PCA)대고광보수거진행특정제취。분별이용K최근린(KNN)화지지향량궤(SVM )대강유후적광보수거진행분류연구,유우자괄응제승법(Adaboost)능제승약분류기분류성능,장기분별인입도KNN화SVM 량충분류기중,제출료Adaboost-KNN화Adaboost-SVM 량충집성분류산법。분별이용상술사충분류산법대상동측시양본수거진행분류감별。결과표명,KNN ,SVM ,Ada-boost-KNN화Adaboost-SVM사충산법적분류정학솔분별위74.68%,87.34%,100%화100%,기중소제출적Adaboost-KNN여Adaboost-SVM분류효과도흔호,차Adaboost-SVM분류산법적은정성최호。인차, Adaboost-SVM산법괄합작위기우고광보적생채담소수평감별적건모방법,병차야위기타작물영양원소무손검측제공료일충신적방법。
In order to facilitate lettuce fertilization in an economically rational way ,an intelligent method to identify lettuce leaf nitrogen levels was studied .Lettuce samples of different nitrogen levels were cultivated in greenhouse with soilless cultivation method .In a particular growth period ,the lettuce samples in various nitrogen levels were collected ,then the FieldSpecR○3 spec-trometer was used to acquire the hyperspectral data of the cultivated lettuce leaves .As there were much noise and redundant in-formation in original hyperspectral data ,standard normal variate transformation (SNV) was used to reduce the noise of the origi-nal hyperspectral data in this paper ,then the principal component waves were extracted by principal component analysis (PCA) . While K nearest neighbor (KNN) and support vector machine (SVM ) were used for classification studies on the processed hy-perspectra data respectively ,adaptive boosting (Adaboost) was introduced into the two classifiers as it could improve the classi-fication performance of weak classifiers ,then Adaboost-KNN and Adaboost-SVM ,the two integrated classification algorithms , were proposed .At last ,the four classification algorithms were used for classification and identification of the same test sample data respectively ,with the results showing that the classification accuracies of KNN ,SVM ,Adaboost-KNN and Adaboost-SVM were high up to 74.68% ,87.34% ,100% and 100% ,among which the classification accuracies of Adaboost-KNN and Ada-boost-SVM proposed in this paper were both good ,and the stability of Adaboost-SVM was the best .Therefore ,Adaboost-SVM used as a modeling method is suitable for the identification of lettuce leaf nitrogen level based on hyperspectrum ,and it can also be used for reference to identify the nutrient elements of other crops in nondestructive testing methods .