计算机工程与应用
計算機工程與應用
계산궤공정여응용
COMPUTER ENGINEERING AND APPLICATIONS
2013年
23期
95-99
,共5页
体育视频%最小二乘支持向量机%分器设计%特征提取%证据理论
體育視頻%最小二乘支持嚮量機%分器設計%特徵提取%證據理論
체육시빈%최소이승지지향량궤%분기설계%특정제취%증거이론
sports video%least squares support vector machine%classifier design%feature extraction%evidence theory
针对单一特征的体育视频分类的正确率低和稳定性差等缺陷,提出一种最小二乘支持向量机(LSSVM)和证据理论相融合的体育视频分类模型(DS-LSSVM)。提取颜色、纹理、亮度、运动矢量场等4种反映体育视频类别特征,将4种单特征的LSSVM初步分类结果作为独立证据构造基本概率指派,运用DS组合规则进行决策级融合,根据分类判决门限给出最终的体育视频分类结果,最后进行仿真实验。结果表明,DS-LSSVM的体育视频分类正确率高达97.90%,相对于参比模型,DS-LSSVM具有体育视频分类正确率高、稳定性好等优势。
針對單一特徵的體育視頻分類的正確率低和穩定性差等缺陷,提齣一種最小二乘支持嚮量機(LSSVM)和證據理論相融閤的體育視頻分類模型(DS-LSSVM)。提取顏色、紋理、亮度、運動矢量場等4種反映體育視頻類彆特徵,將4種單特徵的LSSVM初步分類結果作為獨立證據構造基本概率指派,運用DS組閤規則進行決策級融閤,根據分類判決門限給齣最終的體育視頻分類結果,最後進行倣真實驗。結果錶明,DS-LSSVM的體育視頻分類正確率高達97.90%,相對于參比模型,DS-LSSVM具有體育視頻分類正確率高、穩定性好等優勢。
침대단일특정적체육시빈분류적정학솔저화은정성차등결함,제출일충최소이승지지향량궤(LSSVM)화증거이론상융합적체육시빈분류모형(DS-LSSVM)。제취안색、문리、량도、운동시량장등4충반영체육시빈유별특정,장4충단특정적LSSVM초보분류결과작위독립증거구조기본개솔지파,운용DS조합규칙진행결책급융합,근거분류판결문한급출최종적체육시빈분류결과,최후진행방진실험。결과표명,DS-LSSVM적체육시빈분류정학솔고체97.90%,상대우삼비모형,DS-LSSVM구유체육시빈분류정학솔고、은정성호등우세。
The correct rate of sports video classification for single feature is very low and stability is poor, this paper proposes a sports video classification method combining Least Squares Support Vector Machine(LSSVM)with evidence theory(DS-LSSVM). The color, texture, brightness, motion vector features of sports video are extracted, and then the extracted features are input into LSSVM to learn and get the preliminary classification results which are taken as evidence to establish the basic probability assignment, and DS is used to decide level fusion, the final sports video classification results are got according to the classifica-tion threshold, the simulation experiment is carried out. The simulation results show that the classification rate of the proposed algorithm reaches 97.90%, compared with the reference algorithms, the proposed algorithm has high video classification rate and good stability advantages.