计算机工程与应用
計算機工程與應用
계산궤공정여응용
COMPUTER ENGINEERING AND APPLICATIONS
2013年
23期
86-90
,共5页
高雷阜%赵世杰%高晶
高雷阜%趙世傑%高晶
고뢰부%조세걸%고정
支持向量机%人工鱼群算法%参数优化%遗传算法
支持嚮量機%人工魚群算法%參數優化%遺傳算法
지지향량궤%인공어군산법%삼수우화%유전산법
support vector machine%artificial fish-swarm algorithm%parameter optimization%genetic algorithm
针对支持向量机的参数优化缺乏理论支持,而SVM交叉检验法选取又较为费时的情况下,提出了基于人工鱼群算法的支持向量机参数优化选取算法,并以SVM分类预测准确率最大为优化原则,利用人工鱼群算法的较好并行性和较强的全局寻优能力,以实现最优目标并得到SVM的最优参数组合。数值实验结果表明:人工鱼群算法在SVM参数优化选取中具有更快的寻优性能,同时具有较高的分类准确率。该方法具有较好的并行性和较强的全局寻优能力。
針對支持嚮量機的參數優化缺乏理論支持,而SVM交扠檢驗法選取又較為費時的情況下,提齣瞭基于人工魚群算法的支持嚮量機參數優化選取算法,併以SVM分類預測準確率最大為優化原則,利用人工魚群算法的較好併行性和較彊的全跼尋優能力,以實現最優目標併得到SVM的最優參數組閤。數值實驗結果錶明:人工魚群算法在SVM參數優化選取中具有更快的尋優性能,同時具有較高的分類準確率。該方法具有較好的併行性和較彊的全跼尋優能力。
침대지지향량궤적삼수우화결핍이론지지,이SVM교차검험법선취우교위비시적정황하,제출료기우인공어군산법적지지향량궤삼수우화선취산법,병이SVM분류예측준학솔최대위우화원칙,이용인공어군산법적교호병행성화교강적전국심우능력,이실현최우목표병득도SVM적최우삼수조합。수치실험결과표명:인공어군산법재SVM삼수우화선취중구유경쾌적심우성능,동시구유교고적분류준학솔。해방법구유교호적병행성화교강적전국심우능력。
As considering that the parameter optimization of support vector machine lacks theory support and the SVM cross-validation method spends lots of time on selecting parameters, the parameter optimization selection method of support vec-tor machine is proposed based on artificial fish-swarm algorithm. This method puts the SVM classification prediction accuracy rate as the optimization principle and uses the better parallelism of artificial fish-swarm algorithm and the stronger global optimi-zation ability to achieve the optimal target and obtain optimal parameter combination of SVM. The results of numerical value experi-ments show that the artificial fish-swarm algorithm has faster performance optimization and higher classification accuracy rate in SVM parameters’optimization selection. This method has the better parallelism and the stronger global optimization ability.