计算机工程与应用
計算機工程與應用
계산궤공정여응용
COMPUTER ENGINEERING AND APPLICATIONS
2013年
23期
35-38
,共4页
有限体积方法%变系数椭圆方程%界面问题
有限體積方法%變繫數橢圓方程%界麵問題
유한체적방법%변계수타원방정%계면문제
finite volume method%elliptic equations with variable coefficients%interface problem
利用修正的有限体积方法求解带有间断系数的泊松方程,改进是对基于笛卡尔坐标系下的调和平均系数进行的。数值实验表明新格式二阶逐点收敛并且在界面处具有二阶精度,新方法较已有的求解不连续扩散系数的算术平均法和调和平均法,特别是在系数跳跃较大的情况下更具优势。
利用脩正的有限體積方法求解帶有間斷繫數的泊鬆方程,改進是對基于笛卡爾坐標繫下的調和平均繫數進行的。數值實驗錶明新格式二階逐點收斂併且在界麵處具有二階精度,新方法較已有的求解不連續擴散繫數的算術平均法和調和平均法,特彆是在繫數跳躍較大的情況下更具優勢。
이용수정적유한체적방법구해대유간단계수적박송방정,개진시대기우적잡이좌표계하적조화평균계수진행적。수치실험표명신격식이계축점수렴병차재계면처구유이계정도,신방법교이유적구해불련속확산계수적산술평균법화조화평균법,특별시재계수도약교대적정황하경구우세。
In this paper, a new modified finite volume method is presented to solve the elliptic equations with discontinuous coefficients. This method allows discontinuities of the solution and normal derivatives on the interface inside the domain on a Cartesian grid. From experiment results, this scheme is second-order point-wise convergence and approximates the fluxes to second-order accuracy. At the same time, the numerical results show that the new scheme is much more accurate than the known schemes which use arithmetic and harmonic averaging in solving interface problems, especially in the cases of large jumps of coefficient.