电力系统保护与控制
電力繫統保護與控製
전력계통보호여공제
POWER SYSTM PROTECTION AND CONTROL
2013年
23期
67-72
,共6页
光伏组件%5参数模型%参数计算%牛顿-拉夫逊法%二极管理想因子
光伏組件%5參數模型%參數計算%牛頓-拉伕遜法%二極管理想因子
광복조건%5삼수모형%삼수계산%우돈-랍부손법%이겁관이상인자
photovoltaic module%5-parameter model%parameter determining%Newton-Raphson algorithm%diode ideality factor
利用光伏电池生产厂家提供的标准测试条件下开路点、短路点和最大功率点的实测数据,形成含光生电流、二极管理想因子、等效串联电阻、等效并联电阻的非线性方程组,用牛顿-拉夫逊法进行求解。针对求解时二极管理想因子初值的选取不当导致其他模型参数的计算结果出现参数漂移问题,提出一种等值修正计算方法,通过消去二极管理想因子后建立了等值方程式,给出了相应的迭代参量修正策略。理论分析表明,该方法不再由人根据经验选定二极管理想因子值,求解过程中没有忽略等效的并联电阻和串联电阻,迭代修正策略保证了通过少量迭代即可得到精确的模型参数。结合MSX60光伏组件实际实验数据的算例分析验证了所提算法的准确性。
利用光伏電池生產廠傢提供的標準測試條件下開路點、短路點和最大功率點的實測數據,形成含光生電流、二極管理想因子、等效串聯電阻、等效併聯電阻的非線性方程組,用牛頓-拉伕遜法進行求解。針對求解時二極管理想因子初值的選取不噹導緻其他模型參數的計算結果齣現參數漂移問題,提齣一種等值脩正計算方法,通過消去二極管理想因子後建立瞭等值方程式,給齣瞭相應的迭代參量脩正策略。理論分析錶明,該方法不再由人根據經驗選定二極管理想因子值,求解過程中沒有忽略等效的併聯電阻和串聯電阻,迭代脩正策略保證瞭通過少量迭代即可得到精確的模型參數。結閤MSX60光伏組件實際實驗數據的算例分析驗證瞭所提算法的準確性。
이용광복전지생산엄가제공적표준측시조건하개로점、단로점화최대공솔점적실측수거,형성함광생전류、이겁관이상인자、등효천련전조、등효병련전조적비선성방정조,용우돈-랍부손법진행구해。침대구해시이겁관이상인자초치적선취불당도치기타모형삼수적계산결과출현삼수표이문제,제출일충등치수정계산방법,통과소거이겁관이상인자후건립료등치방정식,급출료상응적질대삼량수정책략。이론분석표명,해방법불재유인근거경험선정이겁관이상인자치,구해과정중몰유홀략등효적병련전조화천련전조,질대수정책략보증료통과소량질대즉가득도정학적모형삼수。결합MSX60광복조건실제실험수거적산례분석험증료소제산법적준학성。
Actual experimental data under standard test conditions at open circuit point, short circuit point and maximum power point are provided by photovoltaic module manufacturer. Based on these data, nonlinearity equations with light current, diode ideality factor, equivalent series and shunt resistances are built and solved with Newton-Raphson algorithm. Aiming at the parametric drifting problem of the other four parameters’ calculating results, when the initial value of diode ideality factor is selected improperly, an equivalent correction algorithm is proposed. Eliminating the diode ideality factor, an equivalent equation is built. Besides, an iterative parametric correction strategy is put forward as well. Theoretical analysis shows, with the method proposed in this paper, the diode ideality factor value is no longer estimated according to someone’s experience, and the equivalent series and shunt resistances are no longer neglected. What’s more, the iterative parametric correction strategy ensures accurate model parameters can be obtained through a small amount of iteration. The accuracy of the algorithm is validated based on the actual experimental data analysis of MSX60 photovoltaic module.