中国烟草科学
中國煙草科學
중국연초과학
CHINESE TOBACCO SCIENCE
2013年
3期
84-88
,共5页
曹鹏云%付秋娟%宫会丽%杨宁
曹鵬雲%付鞦娟%宮會麗%楊寧
조붕운%부추연%궁회려%양저
相似性度量%局部线性嵌入%测地线距离%核方法
相似性度量%跼部線性嵌入%測地線距離%覈方法
상사성도량%국부선성감입%측지선거리%핵방법
similarity measure%local linear embedded%geodesic distance%kernel transformation
为判断高维数据空间下烟叶质量相似性,本研究提出了一种基于核变换和测地距离线的局部线性嵌入的相似性度量计算方法,并以450个复烤片烟样品质量分布特征为材料进行特征分析与相似性度量实验验证。结果表明,主成分分析(PCA)的线性降维方法虽能体现原料质量数据内在的非线性特征,但样本点重叠较多,而测地线局部线性嵌入降维方法则能很好表征样本点的分类能力和对领域数据的适用性;在相似性度量时,嵌入映射方法在同产区、同部位、相近等级类烟叶搜索到的数量大于在原始数据集和PCA变换后数据集上搜索得到的结果,该方法能够有效解决传统原料相似性度量方法中要求低维空间保距映射的问题。
為判斷高維數據空間下煙葉質量相似性,本研究提齣瞭一種基于覈變換和測地距離線的跼部線性嵌入的相似性度量計算方法,併以450箇複烤片煙樣品質量分佈特徵為材料進行特徵分析與相似性度量實驗驗證。結果錶明,主成分分析(PCA)的線性降維方法雖能體現原料質量數據內在的非線性特徵,但樣本點重疊較多,而測地線跼部線性嵌入降維方法則能很好錶徵樣本點的分類能力和對領域數據的適用性;在相似性度量時,嵌入映射方法在同產區、同部位、相近等級類煙葉搜索到的數量大于在原始數據集和PCA變換後數據集上搜索得到的結果,該方法能夠有效解決傳統原料相似性度量方法中要求低維空間保距映射的問題。
위판단고유수거공간하연협질량상사성,본연구제출료일충기우핵변환화측지거리선적국부선성감입적상사성도량계산방법,병이450개복고편연양품질량분포특정위재료진행특정분석여상사성도량실험험증。결과표명,주성분분석(PCA)적선성강유방법수능체현원료질량수거내재적비선성특정,단양본점중첩교다,이측지선국부선성감입강유방법칙능흔호표정양본점적분류능력화대영역수거적괄용성;재상사성도량시,감입영사방법재동산구、동부위、상근등급류연협수색도적수량대우재원시수거집화PCA변환후수거집상수색득도적결과,해방법능구유효해결전통원료상사성도량방법중요구저유공간보거영사적문제。
In this paper, locally linear embedding algorithm in manifold learning based on kernel transformation and the geodesic distance was proposed for judging the quality of tobacco leaf similarity in high-dimensional data space. This method was verified through feature analysis and similarity measure experiment of 450 tobacco grilled piece samples. The results showed that local linear embedded method based on geodesics distance had very good characteristic of the sample classification ability and the applicability of field data. PCA method could reflect the inherent nonlinear characteristics of data quality of raw material, but there existed the more overlap of sample points. In the similarity measurement, the searching tobacco numbers through this method in the same producing area, the same position and the similar grade were greater than the number of tobacco leaf in original data set and that of PCA transform. The method can effectively solve the isometric problem in low-dimensional space to similarity measure.