燕山大学学报
燕山大學學報
연산대학학보
JOURNAL OF YANSHAN UNIVERSITY
2013年
3期
265-269
,共5页
胡长远%唐和生%薛松涛%苏瑜
鬍長遠%唐和生%薛鬆濤%囌瑜
호장원%당화생%설송도%소유
微分演化%多目标优化%非支配排序%桁架结构
微分縯化%多目標優化%非支配排序%桁架結構
미분연화%다목표우화%비지배배서%항가결구
differential evolution%multi-objective optimization%non-dominated sorting%truss structure
为了解决带有约束的桁架结构的多目标优化问题,本文采用了一种基于微分演化的多目标优化(DEMO)方法。DEMO 方法采用多目标优化进化算法中 Pareto 和拥挤距离排序机制,并保留了 DE 算法的优点。为了验证 DEMO 算法的可行性和有效性,对经典桁架进行尺寸优化,并与其他优化方法进行了比较,数值结果表明DEMO 算法性能比其他算法要好,其所得的解具有更好的多样性、均匀性和收敛性。
為瞭解決帶有約束的桁架結構的多目標優化問題,本文採用瞭一種基于微分縯化的多目標優化(DEMO)方法。DEMO 方法採用多目標優化進化算法中 Pareto 和擁擠距離排序機製,併保留瞭 DE 算法的優點。為瞭驗證 DEMO 算法的可行性和有效性,對經典桁架進行呎吋優化,併與其他優化方法進行瞭比較,數值結果錶明DEMO 算法性能比其他算法要好,其所得的解具有更好的多樣性、均勻性和收斂性。
위료해결대유약속적항가결구적다목표우화문제,본문채용료일충기우미분연화적다목표우화(DEMO)방법。DEMO 방법채용다목표우화진화산법중 Pareto 화옹제거리배서궤제,병보류료 DE 산법적우점。위료험증 DEMO 산법적가행성화유효성,대경전항가진행척촌우화,병여기타우화방법진행료비교,수치결과표명DEMO 산법성능비기타산법요호,기소득적해구유경호적다양성、균균성화수렴성。
In order to solve the multi-objective optimization of truss structures with constrains, a new approach to multi-objective optimization based on differential evolution (DEMO) was adopted in this paper. DEMO adopted the mechanisms of Pareto based ranking and crowding distance sorting which used by evolutionary algorithms for multi-objective optimization, and preserved the advantages of differential evolution (DE). Classical truss sizing optimization problems are solved to demonstrate the feasibility and effectiveness of the DEMO algorithm, and the results are compared with other optimization methods. The results indicate that the DEMO provides better performance in the diversity, the uniformity and the convergence of the obtained solution than other methods.