计算机与应用化学
計算機與應用化學
계산궤여응용화학
COMPUTERS AND APPLIED CHEMISTRY
2013年
3期
256-260
,共5页
李芳%张科%马宏方%张海涛%应卫勇%房鼎业
李芳%張科%馬宏方%張海濤%應衛勇%房鼎業
리방%장과%마굉방%장해도%응위용%방정업
热力学分析%乙醇%合成气合成%甲醇同系化%醋酸加氢
熱力學分析%乙醇%閤成氣閤成%甲醇同繫化%醋痠加氫
열역학분석%을순%합성기합성%갑순동계화%작산가경
thermodynamic analysis%ethanol%synthesis from syngas%methanol homologation%hydrogenation of acetic acid
运用吉布斯自由能最小法对3种不同路线(合成气直接合成、甲醇同系化、醋酸加氢)合成乙醇热力学进行了分析,在温度373 K~873 K,压力0.1 MPa~10 MPa 的范围内获得了各路线原料转化率与产物平衡组成随温度与压力变化的关系。对于合成气直接合成乙醇,低温对 CO 平衡转化率有利,在压力为2 MPa 时,温度从373 K 升高到873 K,CO 平衡转化率从100%降到1.56%;在甲醇同系化合成乙醇工艺中,甲醇的转化率在所研究的温度压力范围内都几乎为100%,低温时(T<473 K)甲醇经同系化反应接近完全转化为乙醇,高温时(T>673 K)甲醇几乎全部分解为 CO 与 H2;醋酸加氢制乙醇工艺中醋酸的转化率均大于70.79%。对于这3种路线,乙醇的平衡组成在10 MPa、373 K 时达到最大,分别为50%,50%与25%。
運用吉佈斯自由能最小法對3種不同路線(閤成氣直接閤成、甲醇同繫化、醋痠加氫)閤成乙醇熱力學進行瞭分析,在溫度373 K~873 K,壓力0.1 MPa~10 MPa 的範圍內穫得瞭各路線原料轉化率與產物平衡組成隨溫度與壓力變化的關繫。對于閤成氣直接閤成乙醇,低溫對 CO 平衡轉化率有利,在壓力為2 MPa 時,溫度從373 K 升高到873 K,CO 平衡轉化率從100%降到1.56%;在甲醇同繫化閤成乙醇工藝中,甲醇的轉化率在所研究的溫度壓力範圍內都幾乎為100%,低溫時(T<473 K)甲醇經同繫化反應接近完全轉化為乙醇,高溫時(T>673 K)甲醇幾乎全部分解為 CO 與 H2;醋痠加氫製乙醇工藝中醋痠的轉化率均大于70.79%。對于這3種路線,乙醇的平衡組成在10 MPa、373 K 時達到最大,分彆為50%,50%與25%。
운용길포사자유능최소법대3충불동로선(합성기직접합성、갑순동계화、작산가경)합성을순열역학진행료분석,재온도373 K~873 K,압력0.1 MPa~10 MPa 적범위내획득료각로선원료전화솔여산물평형조성수온도여압력변화적관계。대우합성기직접합성을순,저온대 CO 평형전화솔유리,재압력위2 MPa 시,온도종373 K 승고도873 K,CO 평형전화솔종100%강도1.56%;재갑순동계화합성을순공예중,갑순적전화솔재소연구적온도압력범위내도궤호위100%,저온시(T<473 K)갑순경동계화반응접근완전전화위을순,고온시(T>673 K)갑순궤호전부분해위 CO 여 H2;작산가경제을순공예중작산적전화솔균대우70.79%。대우저3충로선,을순적평형조성재10 MPa、373 K 시체도최대,분별위50%,50%여25%。
Thermodynamic analysis of ethanol (EtOH) synthesis using the Gibbs free energy minimization method for three routes(namely, direct synthesis from syngas, methanol homologation and hydrogenation of acetic acid (HAC)) have been performed in the range of (373-873) K and (0.1-10) MPa in this study. The conversion of key feedstock and product equilibrium composition are obtained as a function of temperature and pressure. For direct synthesis of ethanol, low temperature favors the CO equilibrium conversion. CO conversion would changes from 100% to 1.56% with increasing temperature from 373 K to 873 K at 2 MPa. For the process from methanol homologation, nearly 100% methanol conversion could be gained at all temperatures and pressures. Methanol would be nearly converted into ethanol via homologation reaction at lower temperature (T<473 K) and almost decomposed into CO and H2 at higher temperature(T>673 K). HAC conversion can reach higher value (>70.79%) under the conditions studied for HAC hydrogenation. The maximum ethanol equilibrium content was 50 %, 50 % and 20 % respectively for the above three routes at T=373 K, P=10 MPa.