计算机与应用化学
計算機與應用化學
계산궤여응용화학
COMPUTERS AND APPLIED CHEMISTRY
2013年
4期
443-447
,共5页
相图%介稳%多体系%Schreinemakers 规则
相圖%介穩%多體繫%Schreinemakers 規則
상도%개은%다체계%Schreinemakers 규칙
phase diagram%metastable%multisystem%Schreinemakers’ rules
以 Ca-Fe-Si-O 体系多相组合的 logf(O2)–loga(SiO2)相图为例介绍了一种相图计算方法及 Fortran95语言编程的实现过程。首先根据 Gibbs 相律确定了各个单变度和无变度组合,并根据化学成分图解配平化学反应方程式。然后,按照文献中的模型和参数计算各种矿物相和组分的 Gibbs 自由能,进而在给定的温度压力下计算各条反应平衡线的 logf(O2)和 loga(SiO2)值。然后再根据 Schreinemakers 规则判断相图中介稳的相关系,并从计算结果中去掉单变度反应线的介稳部分和介稳的无变度点。最后讨论了温度、压力对平衡的影响和新的矿物相加入时的计算方法和注意事项。
以 Ca-Fe-Si-O 體繫多相組閤的 logf(O2)–loga(SiO2)相圖為例介紹瞭一種相圖計算方法及 Fortran95語言編程的實現過程。首先根據 Gibbs 相律確定瞭各箇單變度和無變度組閤,併根據化學成分圖解配平化學反應方程式。然後,按照文獻中的模型和參數計算各種礦物相和組分的 Gibbs 自由能,進而在給定的溫度壓力下計算各條反應平衡線的 logf(O2)和 loga(SiO2)值。然後再根據 Schreinemakers 規則判斷相圖中介穩的相關繫,併從計算結果中去掉單變度反應線的介穩部分和介穩的無變度點。最後討論瞭溫度、壓力對平衡的影響和新的礦物相加入時的計算方法和註意事項。
이 Ca-Fe-Si-O 체계다상조합적 logf(O2)–loga(SiO2)상도위례개소료일충상도계산방법급 Fortran95어언편정적실현과정。수선근거 Gibbs 상률학정료각개단변도화무변도조합,병근거화학성분도해배평화학반응방정식。연후,안조문헌중적모형화삼수계산각충광물상화조분적 Gibbs 자유능,진이재급정적온도압력하계산각조반응평형선적 logf(O2)화 loga(SiO2)치。연후재근거 Schreinemakers 규칙판단상도중개은적상관계,병종계산결과중거도단변도반응선적개은부분화개은적무변도점。최후토론료온도、압력대평형적영향화신적광물상가입시적계산방법화주의사항。
Taking the logf(O2)–loga(SiO2) phase diagram of a multi-phase assemblage in the Ca-Fe-Si-O system as example, this article introduces the approach for phase diagram calculation and the realization of the corresponding program design based on FORTRAN language. At first, determine the invariant and univariant assemblages according to Gibbs phase rule, and balance all univariant reactions according to the chemography of the system. Then, calculate the Gibbs free energy of every phase (or component as a participant) according to the models and relevant parameters in literature, as well as the corresponding logf(O2) and loga(SiO2) values of every reaction equilibrium line at given temperature and pressure. Then, judge the metastable phase relations by Schreinemakers’ rules and then exclude the metastable invariants and the metastable parts of all univariant reaction lines. The last section briefly discusses the influence of temperature and pressure on phase equilibria and the algorithm and matters needing attention when a new phase is added to the system.