计算机与应用化学
計算機與應用化學
계산궤여응용화학
COMPUTERS AND APPLIED CHEMISTRY
2013年
4期
439-442
,共4页
刘金昌%曹俊雅%刘娟%解强
劉金昌%曹俊雅%劉娟%解彊
류금창%조준아%류연%해강
活性炭%镍离子吸附%Aspen Adsorption%穿透曲线
活性炭%鎳離子吸附%Aspen Adsorption%穿透麯線
활성탄%얼리자흡부%Aspen Adsorption%천투곡선
activated carbon%nickel ion adsorption%Aspen Adsorption%breakthrough curve
利用 Aspen Adsorption 对活性炭吸附溶液中镍离子的过程进行模拟研究。通过静态吸附实验数据拟合、吸附等温线常数项估算,建立了实验室规模的活性炭吸附溶液中镍离子的单塔吸附模型;在设置的进料流量为0.001 m3/s、进料浓度为50 mg/m3的初始条件下,模拟计算获得了吸附塔出口液相中镍离子浓度随时间的变化和沿床层轴向的分布,并考察了进料浓度、进料流量和传质系数等对吸附过程和穿透曲线的影响。结果表明:模拟计算结果与实验结果基本吻合,模型假设、参数设置合理,研究条件下吸附床层在15000 s 后被完全穿透;随进料镍离子浓度、进料流量的增大,吸附床层的穿透曲线均前移,进料流量的影响更为显著,进料镍离子浓度由50 mg/m3增大至5000 mg/m3时,穿透时间从3500 s 提前至1500 s,而进料量由0.001 m3/s 提高到0.002 m3/s 时,穿透时间从3500 s 即提前至1700 s;传质系数≤0.1 s-1时对吸附性能影响显著。模拟研究、计算为放大试验及实际工程应用工艺参数的选择提供了依据。
利用 Aspen Adsorption 對活性炭吸附溶液中鎳離子的過程進行模擬研究。通過靜態吸附實驗數據擬閤、吸附等溫線常數項估算,建立瞭實驗室規模的活性炭吸附溶液中鎳離子的單塔吸附模型;在設置的進料流量為0.001 m3/s、進料濃度為50 mg/m3的初始條件下,模擬計算穫得瞭吸附塔齣口液相中鎳離子濃度隨時間的變化和沿床層軸嚮的分佈,併攷察瞭進料濃度、進料流量和傳質繫數等對吸附過程和穿透麯線的影響。結果錶明:模擬計算結果與實驗結果基本吻閤,模型假設、參數設置閤理,研究條件下吸附床層在15000 s 後被完全穿透;隨進料鎳離子濃度、進料流量的增大,吸附床層的穿透麯線均前移,進料流量的影響更為顯著,進料鎳離子濃度由50 mg/m3增大至5000 mg/m3時,穿透時間從3500 s 提前至1500 s,而進料量由0.001 m3/s 提高到0.002 m3/s 時,穿透時間從3500 s 即提前至1700 s;傳質繫數≤0.1 s-1時對吸附性能影響顯著。模擬研究、計算為放大試驗及實際工程應用工藝參數的選擇提供瞭依據。
이용 Aspen Adsorption 대활성탄흡부용액중얼리자적과정진행모의연구。통과정태흡부실험수거의합、흡부등온선상수항고산,건립료실험실규모적활성탄흡부용액중얼리자적단탑흡부모형;재설치적진료류량위0.001 m3/s、진료농도위50 mg/m3적초시조건하,모의계산획득료흡부탑출구액상중얼리자농도수시간적변화화연상층축향적분포,병고찰료진료농도、진료류량화전질계수등대흡부과정화천투곡선적영향。결과표명:모의계산결과여실험결과기본문합,모형가설、삼수설치합리,연구조건하흡부상층재15000 s 후피완전천투;수진료얼리자농도、진료류량적증대,흡부상층적천투곡선균전이,진료류량적영향경위현저,진료얼리자농도유50 mg/m3증대지5000 mg/m3시,천투시간종3500 s 제전지1500 s,이진료량유0.001 m3/s 제고도0.002 m3/s 시,천투시간종3500 s 즉제전지1700 s;전질계수≤0.1 s-1시대흡부성능영향현저。모의연구、계산위방대시험급실제공정응용공예삼수적선택제공료의거。
Adsorption process of nickel ion onto activated carbon from aqueous solution was simulated and studied with the aid of Aspen Adsorption. The model of a laboratory scale column for nickel adsorption was built on the basis of the experimental data fitting and the adsorption isotherm constants estimating. The nickel ion concentration at exit of adsorption column vs time curve and bed axial loading distribution of nickel ion were obtained from simulation results with the assumption of process parameters, including feed flow rate of 0.001 m3/s and feed concentration of 50 mg/m3. Also, the influences of feed concentration, feed flow rate and mass transfer coefficient on adsorption process and breakthrough curve were investigated. The results reveal that the simulated values of the model are consistent with experimental data and the bed is completely penetrated after 15000 s. Penetration time decreases from 3500 s to 1500 s as the feed concentration of nickel ion increases from 50 mg/m3 to 5000 mg/m3, and it decreases from 3500 s to 1700 s while the feed flow rate varies from 0.001 m3/s to 0.002 m3/s. Mass transfer coefficient has a significant influence on adsorption capacity, especially when its value is less more than 0.1 s-1. The modeling study provides reference data for scale-up experiment and industrial application.