计算机与应用化学
計算機與應用化學
계산궤여응용화학
COMPUTERS AND APPLIED CHEMISTRY
2013年
4期
386-390
,共5页
彭艳芬%刘天宝%严永新%汪新
彭豔芬%劉天寶%嚴永新%汪新
팽염분%류천보%엄영신%왕신
硝基芳烃%密度泛函理论%定量构效关系%黑头呆鱼
硝基芳烴%密度汎函理論%定量構效關繫%黑頭呆魚
초기방경%밀도범함이론%정량구효관계%흑두태어
nitroaromatics%density functional theory(DFT)%Quantitative structure-activity relationships(QSAR)%Fathead minnow
对35种硝基芳烃化合物进行 DFT-B3LYP/6-311G**水平全优化计算。据所得量子化学参数和标题化合物的辛醇/水分配系数(lg KOW)建立硝基芳烃对黑头呆鱼毒性(-lg LC50)的 QSAR 模型,采用内部及外部双重验证的办法深入分析和检验模型的稳健性。最佳模型的复相关系数(R2),去一法(LOO)交互检验复相关系数(R2cv),外部预测样本复相关系数(R2ext)分别为0.975,0.970和0.904,故所建立 QSAR 模型的稳定性和预测能力良好。结果表明:硝基芳烃化合物的毒性主要由分子最低空轨道能(ELUMO)、硝基静电荷(QNO2)、氢原子所带的最高正电荷(QH+)及辛醇/水分配系数决定。苯环上取代基的类型、数目和取代位置直接影响到标题化合物的毒性大小,强吸电子基如硝基会使化合物毒性增强,且邻对位硝基取代的毒性高于间位取代;相反,给电子基团氨基的存在则会使化合物的毒性降低。总之,硝基是这类化合物致毒的主要基团,将硝基包覆或还原为氨基应为此类化合物解毒的重要途径。
對35種硝基芳烴化閤物進行 DFT-B3LYP/6-311G**水平全優化計算。據所得量子化學參數和標題化閤物的辛醇/水分配繫數(lg KOW)建立硝基芳烴對黑頭呆魚毒性(-lg LC50)的 QSAR 模型,採用內部及外部雙重驗證的辦法深入分析和檢驗模型的穩健性。最佳模型的複相關繫數(R2),去一法(LOO)交互檢驗複相關繫數(R2cv),外部預測樣本複相關繫數(R2ext)分彆為0.975,0.970和0.904,故所建立 QSAR 模型的穩定性和預測能力良好。結果錶明:硝基芳烴化閤物的毒性主要由分子最低空軌道能(ELUMO)、硝基靜電荷(QNO2)、氫原子所帶的最高正電荷(QH+)及辛醇/水分配繫數決定。苯環上取代基的類型、數目和取代位置直接影響到標題化閤物的毒性大小,彊吸電子基如硝基會使化閤物毒性增彊,且鄰對位硝基取代的毒性高于間位取代;相反,給電子基糰氨基的存在則會使化閤物的毒性降低。總之,硝基是這類化閤物緻毒的主要基糰,將硝基包覆或還原為氨基應為此類化閤物解毒的重要途徑。
대35충초기방경화합물진행 DFT-B3LYP/6-311G**수평전우화계산。거소득양자화학삼수화표제화합물적신순/수분배계수(lg KOW)건립초기방경대흑두태어독성(-lg LC50)적 QSAR 모형,채용내부급외부쌍중험증적판법심입분석화검험모형적은건성。최가모형적복상관계수(R2),거일법(LOO)교호검험복상관계수(R2cv),외부예측양본복상관계수(R2ext)분별위0.975,0.970화0.904,고소건립 QSAR 모형적은정성화예측능력량호。결과표명:초기방경화합물적독성주요유분자최저공궤도능(ELUMO)、초기정전하(QNO2)、경원자소대적최고정전하(QH+)급신순/수분배계수결정。분배상취대기적류형、수목화취대위치직접영향도표제화합물적독성대소,강흡전자기여초기회사화합물독성증강,차린대위초기취대적독성고우간위취대;상반,급전자기단안기적존재칙회사화합물적독성강저。총지,초기시저류화합물치독적주요기단,장초기포복혹환원위안기응위차류화합물해독적중요도경。
The DFT-B3LYP method, with the basis set 6-311G**, was employed to calculate the molecular geometries and electronic structures of 35 nitroaromatics. EHOMO, ELUMO, ENHOMO, ENLUMO, ET, QH+, QNO2, μ and V were selected as structural descriptors. The acute toxicity (-lg LC50) of these compounds to Fathead minnow along with hydrophobicity described by lg KOW, and the above nine structural parameters, was used to established the quantitative structure-activity relationships (QSAR) by multiple linear regression. The estimation stability and generalization ability of the model was strictly analyzed by both internal and external validation. The correlation coefficient (R2), leave-one-out (LOO) cross validation R2cv, predicted values versus experimental ones of external samples R2ext of established the best model are 0.975, 0.970 and 0.904, respectively. The results indicate that the type and number of the substituents affect the toxicity of these compounds directly. A nitro group substitution increases the toxicity of the compounds, and on the contrary, an amido group substitution decreases their toxicity. For multi-nitrobenzenes, the toxicity of the o- or p-substituted nitrobenzene is bigger than that of the m-substituted one. In conclusion, the nitro group is the main toxic group for nitroaromatics. Wrapping or reducing the nitro groups will decrease the toxicity of the subject chemicals.