电网技术
電網技術
전망기술
POWER SYSTEM TECHNOLOGY
2013年
5期
1378-1383
,共6页
安学利%潘罗平%张飞%唐拥军
安學利%潘囉平%張飛%唐擁軍
안학리%반라평%장비%당옹군
水电机组%状态退化评估%非线性预测%Shepard曲面%EEMD方法%混沌理论%灰色理论
水電機組%狀態退化評估%非線性預測%Shepard麯麵%EEMD方法%混沌理論%灰色理論
수전궤조%상태퇴화평고%비선성예측%Shepard곡면%EEMD방법%혼돈이론%회색이론
hydropower unit%condition degradation assess%nonlinear prediction%Shepard surface%ensemble empirical mode decomposition%chaos theory%grey theory
提出了基于Shepard曲面、经验模态分解法(ensemble empirical mode decomposition,EEMD)、混沌理论和灰色理论的水电机组状态退化评估与趋势预测模型。该方法首先用 Shepard 曲面建立综合考虑有功功率、工作水头作用的水电机组状态退化趋势模型。然后将水电机组状态退化趋势进行EEMD分解,得到若干个相对平稳的固有模态函数(intrinsic mode function,IMF)分量和一个余项分量,对每个IMF分量进行特性识别,根据其不同属性,选用混沌预测模型或灰色模型预测,同时对余项分量进行灰色预测。最后将所有分量的预测结果进行重构,获得最终预测结果。实例分析表明,该方法能有效地评估水电机组状态的退化过程,且能提高退化趋势的预测精度。
提齣瞭基于Shepard麯麵、經驗模態分解法(ensemble empirical mode decomposition,EEMD)、混沌理論和灰色理論的水電機組狀態退化評估與趨勢預測模型。該方法首先用 Shepard 麯麵建立綜閤攷慮有功功率、工作水頭作用的水電機組狀態退化趨勢模型。然後將水電機組狀態退化趨勢進行EEMD分解,得到若榦箇相對平穩的固有模態函數(intrinsic mode function,IMF)分量和一箇餘項分量,對每箇IMF分量進行特性識彆,根據其不同屬性,選用混沌預測模型或灰色模型預測,同時對餘項分量進行灰色預測。最後將所有分量的預測結果進行重構,穫得最終預測結果。實例分析錶明,該方法能有效地評估水電機組狀態的退化過程,且能提高退化趨勢的預測精度。
제출료기우Shepard곡면、경험모태분해법(ensemble empirical mode decomposition,EEMD)、혼돈이론화회색이론적수전궤조상태퇴화평고여추세예측모형。해방법수선용 Shepard 곡면건립종합고필유공공솔、공작수두작용적수전궤조상태퇴화추세모형。연후장수전궤조상태퇴화추세진행EEMD분해,득도약간개상대평은적고유모태함수(intrinsic mode function,IMF)분량화일개여항분량,대매개IMF분량진행특성식별,근거기불동속성,선용혼돈예측모형혹회색모형예측,동시대여항분량진행회색예측。최후장소유분량적예측결과진행중구,획득최종예측결과。실례분석표명,해방법능유효지평고수전궤조상태적퇴화과정,차능제고퇴화추세적예측정도。
Based on Shepard surface, ensemble empirical mode decomposition (EEMD), chaos theory and grey theory, a model to assess and predict condition degradation trend of hydropower unit is proposed. Firstly, utilizing Shepard surface a condition degradation trend model of hydropower unit, in which the actions of active power and working head are synthetically considered, is established;secondly the condition degradation trend of hydropower unit is decomposed by EEMD to obtain several relatively steady intrinsic mode function (IMF) components and a remainder term component, and then each IMF component is identified and according to their different attributes the chaotic prediction model or grey model are chosen to perform prediction, meanwhile the grey prediction of remainder term component is carried out;finally prediction results of all components are reconstructed to obtain final prediction result. Case study results show that using the proposed method the condition degradation process of hydropower unit can be effectively assessed and the prediction accuracy of degradation trend can be improved.