中国有色金属学报
中國有色金屬學報
중국유색금속학보
THE CHINESE JOURNAL OF NONFERROUS METALS
2013年
6期
1605-1610
,共6页
TiB2%碳热还原%传质机理%传质模型
TiB2%碳熱還原%傳質機理%傳質模型
TiB2%탄열환원%전질궤리%전질모형
TiB2%carbothermal reduction%mass transfer mechanism%mass transfer model
在XRD、SEM、能谱分析、TEM、TG-DSC等实验分析的基础上,对以TiO2、B2O3、C为原料,通过碳热还原法合成TiB2粉末的反应传质机理进行了研究,阐明碳热还原法合成TiB2的反应传质机理,建立碳热还原法合成TiB2的反应传质模型。研究表明:在碳热还原TiO2的过程中,由低温到高温,最稳定的还原产物分别是Ti4O7和Ti3O5,尤其当温度超过1300℃以后,Ti3O5为最稳定的还原产物。在碳热还原TiO2与B2O3合成TiB2的反应过程中,DDSC 曲线上有几个明显的吸热峰,这分别对应于 TiO2→Ti4O7→Ti3O5→TiB2的反应阶段。碳与氧化物颗粒之间是通过CO/CO2气体偶实现质量传递的。在反应体系中,B2O2(g)气相、Ti3O5(s)固相分别是形成TiB2的前驱体。
在XRD、SEM、能譜分析、TEM、TG-DSC等實驗分析的基礎上,對以TiO2、B2O3、C為原料,通過碳熱還原法閤成TiB2粉末的反應傳質機理進行瞭研究,闡明碳熱還原法閤成TiB2的反應傳質機理,建立碳熱還原法閤成TiB2的反應傳質模型。研究錶明:在碳熱還原TiO2的過程中,由低溫到高溫,最穩定的還原產物分彆是Ti4O7和Ti3O5,尤其噹溫度超過1300℃以後,Ti3O5為最穩定的還原產物。在碳熱還原TiO2與B2O3閤成TiB2的反應過程中,DDSC 麯線上有幾箇明顯的吸熱峰,這分彆對應于 TiO2→Ti4O7→Ti3O5→TiB2的反應階段。碳與氧化物顆粒之間是通過CO/CO2氣體偶實現質量傳遞的。在反應體繫中,B2O2(g)氣相、Ti3O5(s)固相分彆是形成TiB2的前驅體。
재XRD、SEM、능보분석、TEM、TG-DSC등실험분석적기출상,대이TiO2、B2O3、C위원료,통과탄열환원법합성TiB2분말적반응전질궤리진행료연구,천명탄열환원법합성TiB2적반응전질궤리,건립탄열환원법합성TiB2적반응전질모형。연구표명:재탄열환원TiO2적과정중,유저온도고온,최은정적환원산물분별시Ti4O7화Ti3O5,우기당온도초과1300℃이후,Ti3O5위최은정적환원산물。재탄열환원TiO2여B2O3합성TiB2적반응과정중,DDSC 곡선상유궤개명현적흡열봉,저분별대응우 TiO2→Ti4O7→Ti3O5→TiB2적반응계단。탄여양화물과립지간시통과CO/CO2기체우실현질량전체적。재반응체계중,B2O2(g)기상、Ti3O5(s)고상분별시형성TiB2적전구체。
On the basis of experiment analysis such as XRD, SEM, energy spectrum analysis, TEM and TG-DSC, the reactionary mass transfer mechanism of synthesizing TiB2 by carbothermal reducing TiO2 and B2O3 was studied. The reactionary mass transfer mechanism of synthesizing TiB2 by carbothermal reduction method was analyzed, and the reactionary mass transfer model of synthesizing TiB2 by carbothermal reduction method was built. The results show that, during carbothermal reduction of TiO2, the most stable reduction products are Ti4O7 and Ti3O5 from low temperature to high temperature, respectively, when the reduction temperature is over 1 300 ℃, Ti3O5 is the most stable reduction product.There are several endothermic peaks on DDSC curve in the process of synthesizing TiB2 by carbothermal reducing TiO2 and B2O3, which correspond to reaction stage of TiO2→Ti4O7→Ti3O5→TiB2, respectively. The mass transfer from carbon to the oxide particle is realized by the CO/CO2 gas couple. In reactionary system, B2O2(g) and Ti3O5(s) are the precursors of formation TiB2 by carbothermal reduction.