辽宁工程技术大学学报(自然科学版)
遼寧工程技術大學學報(自然科學版)
료녕공정기술대학학보(자연과학판)
JOURNAL OF LIAONING TECHNICAL UNIVERSITY(NATURAL SCIENCE)
2013年
6期
817-821
,共5页
超市%BP神经网络%数据挖掘%库存控制%最小化%预测%信息化%决策支持
超市%BP神經網絡%數據挖掘%庫存控製%最小化%預測%信息化%決策支持
초시%BP신경망락%수거알굴%고존공제%최소화%예측%신식화%결책지지
supermarket%BP neural network%data mining%inventory control%minimize%forecast%informatization%decision support
为克服传统商品库存成本过大和消费者满意度过低的弊端,采用BP神经网络方法,以超市一段时间内的销售记录为样本数据,分析BP神经网络库存控制模型的训练过程,并验证BP神经网络的自适应能力、容错能力以及处理非线性关系的能力,保证库存预测的准确性,最终提出基于BP神经网络算法的商品库存控制模型。研究结果表明:该控制模型能够准确高效控制超市商品库存,可以为合理控制库存提供决策支持,有效提高库存控制的效率。
為剋服傳統商品庫存成本過大和消費者滿意度過低的弊耑,採用BP神經網絡方法,以超市一段時間內的銷售記錄為樣本數據,分析BP神經網絡庫存控製模型的訓練過程,併驗證BP神經網絡的自適應能力、容錯能力以及處理非線性關繫的能力,保證庫存預測的準確性,最終提齣基于BP神經網絡算法的商品庫存控製模型。研究結果錶明:該控製模型能夠準確高效控製超市商品庫存,可以為閤理控製庫存提供決策支持,有效提高庫存控製的效率。
위극복전통상품고존성본과대화소비자만의도과저적폐단,채용BP신경망락방법,이초시일단시간내적소수기록위양본수거,분석BP신경망락고존공제모형적훈련과정,병험증BP신경망락적자괄응능력、용착능력이급처리비선성관계적능력,보증고존예측적준학성,최종제출기우BP신경망락산법적상품고존공제모형。연구결과표명:해공제모형능구준학고효공제초시상품고존,가이위합리공제고존제공결책지지,유효제고고존공제적효솔。
In order to overcome the drawbacks of the high traditional inventory costs and low consumer satisfaction, this paper analyzed the training process of BP neural network models of inventory control based on the sales record of a supermarket during a period of time as sample data, and verified that the BP neural network adaptive ability, fault-tolerant ability and the ability of dealing with the nonlinear relationship, ensured the accuracy of inventory forecast, finally proposed the inventory control model based on BP neural network algorithm. The results show that the control model can accurately control the supermarket merchandise inventory, provide decision support for reasonable control of inventory, and improve the efficiency of inventory control.