辽宁工程技术大学学报(自然科学版)
遼寧工程技術大學學報(自然科學版)
료녕공정기술대학학보(자연과학판)
JOURNAL OF LIAONING TECHNICAL UNIVERSITY(NATURAL SCIENCE)
2013年
6期
749-753
,共5页
赵丹%陈占君%王东%黄福军%王大伟
趙丹%陳佔君%王東%黃福軍%王大偉
조단%진점군%왕동%황복군%왕대위
矿山安全%故障源%诊断%RBF%灵敏度%传感器%分支%风阻
礦山安全%故障源%診斷%RBF%靈敏度%傳感器%分支%風阻
광산안전%고장원%진단%RBF%령민도%전감기%분지%풍조
mine safety%fault source%diagnosis%RBF%sensitivity%transducer%branch%air drag
为解决井下风速传感器获得的风速异常数据确定故障源位置问题,采用RBF神经网络方法确定可能引起各分支风速异常的分支集合,即建立通风系统故障巷道范围库,再通过对分支的灵敏度进行排序来选择故障巷道诊断的优先级。研究结果表明:RBF 神经网络被训练好后,就可以不用建立具体的数学模型,得到整个网络各分支风量与风阻之间的关系。
為解決井下風速傳感器穫得的風速異常數據確定故障源位置問題,採用RBF神經網絡方法確定可能引起各分支風速異常的分支集閤,即建立通風繫統故障巷道範圍庫,再通過對分支的靈敏度進行排序來選擇故障巷道診斷的優先級。研究結果錶明:RBF 神經網絡被訓練好後,就可以不用建立具體的數學模型,得到整箇網絡各分支風量與風阻之間的關繫。
위해결정하풍속전감기획득적풍속이상수거학정고장원위치문제,채용RBF신경망락방법학정가능인기각분지풍속이상적분지집합,즉건립통풍계통고장항도범위고,재통과대분지적령민도진행배서래선택고장항도진단적우선급。연구결과표명:RBF 신경망락피훈련호후,취가이불용건립구체적수학모형,득도정개망락각분지풍량여풍조지간적관계。
In order to solve the problem of getting abnormal air velocity data by using air velocity transducer to determine the fault source location, the branch collection that may cause the abnormal air velocity is determined by using the RBF neural network method, and the ventilation system fault roadways scope library is established. Then the priority level of fault roadway diagnosis is selected through sorting branch sensitivity. The results show that specific mathematical models do not need to be established by using the trained RBF neural network, which will be able to get the relationship between roadway air volume changes and lead to its changes each branch drag.