计算机与应用化学
計算機與應用化學
계산궤여응용화학
COMPUTERS AND APPLIED CHEMISTRY
2013年
6期
595-599
,共5页
来蔚鹏%廉鹏%陈晓芳%尉涛%邱少君
來蔚鵬%廉鵬%陳曉芳%尉濤%邱少君
래위붕%렴붕%진효방%위도%구소군
5-氨基-1H-四唑%环加成%热力学%动力学
5-氨基-1H-四唑%環加成%熱力學%動力學
5-안기-1H-사서%배가성%열역학%동역학
5-amino-1H-tetrazole%cycloaddition%thermodynamics%kinetics
采用 B3LYP、QCISD、MP2方法在6-311+G(d)基组水平上对叠氮酸与氨氰环加成反应进行了详细研究。首先对所有的反应物、过渡态和产物的构型进行了全参数优化,并用频率分析和内禀反应坐标(IRC)方法对过渡态进行确认。以步长为0.1(amu)1/2 bohr的内禀反应坐标方法在 B3LYP/6-311+G(d)方法和基组水平上计算了内禀反应坐标 s 为(-3.00~3.00)(amu)1/2 bohr 范围内反应的键长、振动频率、NBO电荷变化情况。根据统计热力学方法和用 Wigner 校正的 Eyring 过渡态理论,计算了(200~450) K温度范围内反应热力学函数及速率常数,探讨了温度对反应的影响。结果表明,反应经过过渡态 TS 生成5-AT 的活化能为117.14 kJ/mol (B3LYP)、130.18 kJ/mol(QCISD)和106.24 kJ/mol(MP2),产物的相对能量为-74.24 kJ/mol(B3LYP)、-87.01 kJ/mol(QCISD)和-79.09 kJ/mol(MP2);反应随温度的升高更具有动力学优势,但在热力学上低温下更易于进行,因此,结合热力学和动力学因素,我们认为(300~350) K 是该反应的适宜温度。
採用 B3LYP、QCISD、MP2方法在6-311+G(d)基組水平上對疊氮痠與氨氰環加成反應進行瞭詳細研究。首先對所有的反應物、過渡態和產物的構型進行瞭全參數優化,併用頻率分析和內稟反應坐標(IRC)方法對過渡態進行確認。以步長為0.1(amu)1/2 bohr的內稟反應坐標方法在 B3LYP/6-311+G(d)方法和基組水平上計算瞭內稟反應坐標 s 為(-3.00~3.00)(amu)1/2 bohr 範圍內反應的鍵長、振動頻率、NBO電荷變化情況。根據統計熱力學方法和用 Wigner 校正的 Eyring 過渡態理論,計算瞭(200~450) K溫度範圍內反應熱力學函數及速率常數,探討瞭溫度對反應的影響。結果錶明,反應經過過渡態 TS 生成5-AT 的活化能為117.14 kJ/mol (B3LYP)、130.18 kJ/mol(QCISD)和106.24 kJ/mol(MP2),產物的相對能量為-74.24 kJ/mol(B3LYP)、-87.01 kJ/mol(QCISD)和-79.09 kJ/mol(MP2);反應隨溫度的升高更具有動力學優勢,但在熱力學上低溫下更易于進行,因此,結閤熱力學和動力學因素,我們認為(300~350) K 是該反應的適宜溫度。
채용 B3LYP、QCISD、MP2방법재6-311+G(d)기조수평상대첩담산여안청배가성반응진행료상세연구。수선대소유적반응물、과도태화산물적구형진행료전삼수우화,병용빈솔분석화내품반응좌표(IRC)방법대과도태진행학인。이보장위0.1(amu)1/2 bohr적내품반응좌표방법재 B3LYP/6-311+G(d)방법화기조수평상계산료내품반응좌표 s 위(-3.00~3.00)(amu)1/2 bohr 범위내반응적건장、진동빈솔、NBO전하변화정황。근거통계열역학방법화용 Wigner 교정적 Eyring 과도태이론,계산료(200~450) K온도범위내반응열역학함수급속솔상수,탐토료온도대반응적영향。결과표명,반응경과과도태 TS 생성5-AT 적활화능위117.14 kJ/mol (B3LYP)、130.18 kJ/mol(QCISD)화106.24 kJ/mol(MP2),산물적상대능량위-74.24 kJ/mol(B3LYP)、-87.01 kJ/mol(QCISD)화-79.09 kJ/mol(MP2);반응수온도적승고경구유동역학우세,단재열역학상저온하경역우진행,인차,결합열역학화동역학인소,아문인위(300~350) K 시해반응적괄의온도。
The cycloaddition reaction of hydrazoic acid and cyanamide were detailedly studied by B3LYP, QCISD and MP2 method with 6-311+G*level of theory. The geometries of all stationary points were optimized firstly. Vibrational analysis was carried out to confirm the transition state (TS) structures, and the intrinsic reaction coordinate (IRC) method was used to explore the minimum energy pathway (MEP). The single-point energies of all stationary points were calculated by the same methods and level. The statistical thermodynamic method and Eyring transition state theory with Wigner correction were used to study the thermodynamic and kinetic characters within (200-450) K. The activation energy barriers for the reaction are 117.14 kJ·mol-1 (B3LYP), 130.18 kJ·mol-1 (QCISD), and 106.24 kJ·mol-1 (MP2) respectively, and the relative energy of products are-74.24 kJ·mol-1,-87.01 kJ·mol-1, and-79.09 kJ·mol-1 respectively. The reaction is favored with increase of temperature kinetically, but more easily taken place at low temperature thermodynamically, so we think that 300 to 350 K is most feasible temperature to the reaction.