农业工程学报
農業工程學報
농업공정학보
2013年
14期
277-283
,共7页
吴秋宁%宋剑斌%余方兵%陈丽红%杨文斌※
吳鞦寧%宋劍斌%餘方兵%陳麗紅%楊文斌※
오추저%송검빈%여방병%진려홍%양문빈※
复合材料%导热系数%光%曝晒试验%表面自由能%反射率
複閤材料%導熱繫數%光%曝曬試驗%錶麵自由能%反射率
복합재료%도열계수%광%폭쇄시험%표면자유능%반사솔
composite materials%thermal conductivity%light%insolation experiment%surface free energy%reflectance
为更进一步了解可逆热致变色竹塑复合材料所具有的特性,该论文对可逆变色竹塑复合材的温度与光响应及热学性能进行研究,主要包括:环境温度对变色时间的影响、变色复合材料的曝晒试验(测试环境温度与曝晒装置内的温度)、试样表面的反射率、导热系数等。研究结果表明:变色竹塑复合材料在较高的环境温度下竹塑复合材料的变色响应时间较短,如WTB1在45、50、55、60、65℃的变色时间分别为256.11、146.18、82.78、69.16、45.06 s;曝晒试验的结果表明颜色影响试验箱内温度,添加钛白粉可降低曝晒装置内的温度;在12:00时,WTB1、WTB2、WTB3、WTB4、WTR1、WTR2与环境的温差分别为14.3、12.8、15.3、11.3、15.3、11.3℃。可逆变色竹塑材料的导热系数随着温度的升高而增大,WTB2在15、30、45、60℃下的导热系数分别为0.098、0.099、0.103、0.107 W/(m K),WTB1(未添加钛白粉)表面自由能和接触角分别为67.3°、41.50 MJ/m2,而WTB2(添加钛白粉)的表面自由能和接触角分别为74.6°、37.52 MJ/m2;各种试样的反射率存在差异,添加钛白粉提高了材料的表面反射率,颜色是影响太阳反射率的重要因素之一。研究结果为该材料的实际应用提供数据支持。
為更進一步瞭解可逆熱緻變色竹塑複閤材料所具有的特性,該論文對可逆變色竹塑複閤材的溫度與光響應及熱學性能進行研究,主要包括:環境溫度對變色時間的影響、變色複閤材料的曝曬試驗(測試環境溫度與曝曬裝置內的溫度)、試樣錶麵的反射率、導熱繫數等。研究結果錶明:變色竹塑複閤材料在較高的環境溫度下竹塑複閤材料的變色響應時間較短,如WTB1在45、50、55、60、65℃的變色時間分彆為256.11、146.18、82.78、69.16、45.06 s;曝曬試驗的結果錶明顏色影響試驗箱內溫度,添加鈦白粉可降低曝曬裝置內的溫度;在12:00時,WTB1、WTB2、WTB3、WTB4、WTR1、WTR2與環境的溫差分彆為14.3、12.8、15.3、11.3、15.3、11.3℃。可逆變色竹塑材料的導熱繫數隨著溫度的升高而增大,WTB2在15、30、45、60℃下的導熱繫數分彆為0.098、0.099、0.103、0.107 W/(m K),WTB1(未添加鈦白粉)錶麵自由能和接觸角分彆為67.3°、41.50 MJ/m2,而WTB2(添加鈦白粉)的錶麵自由能和接觸角分彆為74.6°、37.52 MJ/m2;各種試樣的反射率存在差異,添加鈦白粉提高瞭材料的錶麵反射率,顏色是影響太暘反射率的重要因素之一。研究結果為該材料的實際應用提供數據支持。
위경진일보료해가역열치변색죽소복합재료소구유적특성,해논문대가역변색죽소복합재적온도여광향응급열학성능진행연구,주요포괄:배경온도대변색시간적영향、변색복합재료적폭쇄시험(측시배경온도여폭쇄장치내적온도)、시양표면적반사솔、도열계수등。연구결과표명:변색죽소복합재료재교고적배경온도하죽소복합재료적변색향응시간교단,여WTB1재45、50、55、60、65℃적변색시간분별위256.11、146.18、82.78、69.16、45.06 s;폭쇄시험적결과표명안색영향시험상내온도,첨가태백분가강저폭쇄장치내적온도;재12:00시,WTB1、WTB2、WTB3、WTB4、WTR1、WTR2여배경적온차분별위14.3、12.8、15.3、11.3、15.3、11.3℃。가역변색죽소재료적도열계수수착온도적승고이증대,WTB2재15、30、45、60℃하적도열계수분별위0.098、0.099、0.103、0.107 W/(m K),WTB1(미첨가태백분)표면자유능화접촉각분별위67.3°、41.50 MJ/m2,이WTB2(첨가태백분)적표면자유능화접촉각분별위74.6°、37.52 MJ/m2;각충시양적반사솔존재차이,첨가태백분제고료재료적표면반사솔,안색시영향태양반사솔적중요인소지일。연구결과위해재료적실제응용제공수거지지。
In order to understand more features about reversibly thermochromic bamboo/plastic composites(BPC), we focused on its response to the temperature, light and thermal property, which included that, the effect of environment temperature on discoloration time, insolation experiment (test temperature of outside environment and inside of insolation device), reflectance and thermal conductivity of reversibly thermochromic bamboo/plastic composites and so on. The results showed that, the higher the environment temperature was, the shorter the discoloration time of the reversibly thermochromic BPC was. Taking WTB1 (BPC and blue thermochromic microcapsules) as an example, the color-changing time were 256.11, 146.18, 82.78, 69.16, 45.06 s accordingly to that the temperature were 45, 50, 55, 60, 65℃respectively. And the differences of discoloration time among all the samples gradually diminished as the increasing of the environment temperature. The results of the insolation experiment indicated that the variation of environment temperature was verging to placid, but the temperature inside the insolation device was increased quickly and then decreased sharply. The color of samples would influence inside temperature of insolation boxes and the addition of titanium dioxide to composites could reduce it. Differences of temperature at 12:00 am between inside insolation boxes with the test specimen of WTB1, WTB2, WTB3, WTB4, WTR1, WTR2 covered respectively and outside environment were 14.3, 12.8, 15.3, 11.3, 15.3, 11.3 . The thermal conductivity of the reversibly thermochromic℃ BPC was increased as the increasing of the testing temperature. The thermal conductivity of WTB2 were 0.098, 0.099, 0.103, 0.107 W/(m K) correspondently to that the test temperature were 15, 30, 45, 60℃ respectively. Comparing the thermal conductivities of WTB1, WTB2, WTB3, the reversibly thermochromic microcapsules increased thermal conductivity of samples when the test temperature were 15, 30, 45℃. While comparing the thermal conductivity of WTB2, WTB4, WTR2, the thermal conductivity of WTB4 was the highest, followed by WTB2, the smallest was that of WTR2 at test temperature of 15 .℃ But as the increasing of temperature, the size sequency of the thermal conductivity was WTB2 (biggest), WTB4 and WTR2 (smallest). The surface free energy and the contact angles of WTB1 without titanium dioxide were 41.50 MJ/m2 and 67.3° respectively, while surface free energy and contact angles of WTB2 with titanium dioxide were 37.52 MJ/m2 and 74.6° respectively. Contact angles, polar force and surface free energy of blue bamboo/plastic composites and ordinary bamboo/plastic composites were nearly equal. The reflectance of test specimen was different. Titanium dioxide added to the reversibly thermochromic BPC enhanced the surface reflectance of composite materials, the color was one of the important factors which would influence the reflectance of composite materials. The research results in this paper will provide data support for the practical application of the reversibly thermochromic BPC.