岩土力学
巖土力學
암토역학
ROCK AND SOIL MECHANICS
2013年
7期
2031-2035
,共5页
林江%胡万雨%孟凡理%邓建辉%陈佳伟
林江%鬍萬雨%孟凡理%鄧建輝%陳佳偉
림강%호만우%맹범리%산건휘%진가위
土石坝%拱效应系数%心墙%水力劈裂
土石壩%拱效應繫數%心牆%水力劈裂
토석패%공효응계수%심장%수력벽렬
earth-rock dam%arching effect coefficient%core wall%hydraulic fracture
在总结前人提出的拱效应系数基础上,对拱效应系数的公式进行了改进,认为拱效应系数应该是实测土压力与上覆土压力和孔隙水压力之和的比值。结合瀑布沟大坝监测资料,用改进的拱效应系数计算公式对大坝心墙拱效应进行计算,并对心墙内拱效应进行动态分析。在施工期,施工工艺是影响大坝心墙拱效应系数的主要因素,填土在仪器埋设以上0~20 m时,拱效应系数较大,随着填土的增加拱效应系数减小,施工期坝体内应力分布在蓄水初期起决定性作用。在蓄水期,心墙上游侧拱效应系数与水位变化呈反相关联,拱效应系数比下游同高程和0+001 m处大;0+001 m处拱效应系数与水位变化呈正相关联,且此处拱效应系数最小;心墙下游处拱效应系数与水位变化呈正关联的关系,在心墙与基岩接触处拱效应系数大于100%。产生这种规律的原因主要有湿化、渗流、水力劈裂作用,三者共同影响,从而导致心墙内应力发生变化。
在總結前人提齣的拱效應繫數基礎上,對拱效應繫數的公式進行瞭改進,認為拱效應繫數應該是實測土壓力與上覆土壓力和孔隙水壓力之和的比值。結閤瀑佈溝大壩鑑測資料,用改進的拱效應繫數計算公式對大壩心牆拱效應進行計算,併對心牆內拱效應進行動態分析。在施工期,施工工藝是影響大壩心牆拱效應繫數的主要因素,填土在儀器埋設以上0~20 m時,拱效應繫數較大,隨著填土的增加拱效應繫數減小,施工期壩體內應力分佈在蓄水初期起決定性作用。在蓄水期,心牆上遊側拱效應繫數與水位變化呈反相關聯,拱效應繫數比下遊同高程和0+001 m處大;0+001 m處拱效應繫數與水位變化呈正相關聯,且此處拱效應繫數最小;心牆下遊處拱效應繫數與水位變化呈正關聯的關繫,在心牆與基巖接觸處拱效應繫數大于100%。產生這種規律的原因主要有濕化、滲流、水力劈裂作用,三者共同影響,從而導緻心牆內應力髮生變化。
재총결전인제출적공효응계수기출상,대공효응계수적공식진행료개진,인위공효응계수응해시실측토압력여상복토압력화공극수압력지화적비치。결합폭포구대패감측자료,용개진적공효응계수계산공식대대패심장공효응진행계산,병대심장내공효응진행동태분석。재시공기,시공공예시영향대패심장공효응계수적주요인소,전토재의기매설이상0~20 m시,공효응계수교대,수착전토적증가공효응계수감소,시공기패체내응력분포재축수초기기결정성작용。재축수기,심장상유측공효응계수여수위변화정반상관련,공효응계수비하유동고정화0+001 m처대;0+001 m처공효응계수여수위변화정정상관련,차차처공효응계수최소;심장하유처공효응계수여수위변화정정관련적관계,재심장여기암접촉처공효응계수대우100%。산생저충규률적원인주요유습화、삼류、수력벽렬작용,삼자공동영향,종이도치심장내응력발생변화。
Based on the previous definitions of arching effect coefficient, the formula of arching effect coefficient is improved. It is suggested that the arching effect coefficient should be the ratio of measured soil pressure and the sum of overlaying soil pressure and pore water pressure. Combining with the monitoring data of Pubugou dam, the arching effect of core wall is calculated by the improved formula of arch effect coefficient; and dynamical analysis of arching effect is made. Construction technology is the main factor affecting the arching effect coefficient of core wall during the construction. The arching effect coefficient is larger when the filled soil is 0-20 m above the instruments; and decreases with the rising of filled soil. The stress distribution of dam during construction plays an important role in initial water storage. During the impoundment, the arching effect coefficient of upstream side of the core wall shows inverse correlation with water level variation. The arching effect coefficient of upstream side is larger than that of downstream side at the same elevation and 0+001 m. The arching effect coefficient at 0+001 m shows positive correlation with water level variation, where gets the smallest arching effect coefficient. The arching effect coefficient of downstream side of core wall shows positive correlation with water level variation. The arching effect coefficient is larger than 100% on the contact surface between core wall and bed rock. There are three reasons for the above laws, such as wetting, seepage and hydraulic fracture; and the combined effect of the three results in stress variation in core wall.