岩土力学
巖土力學
암토역학
ROCK AND SOIL MECHANICS
2013年
7期
2017-2022,2030
,共7页
凌璐璐%许雅琴%王永胜%张可霓
凌璐璐%許雅琴%王永勝%張可霓
릉로로%허아금%왕영성%장가예
CO2捕集与封存(CCS)%CO2%深部咸水层%TOUGH2软件
CO2捕集與封存(CCS)%CO2%深部鹹水層%TOUGH2軟件
CO2포집여봉존(CCS)%CO2%심부함수층%TOUGH2연건
CO2 capture and storage (CCS)%CO2%deep saline aquifer%TOUGH2 software
CO2深部咸水层地质封存被认为是减缓温室效应的一种有效的工程技术手段。针对神华鄂尔多斯105 t/a CO2捕集与封存(CCS)示范项目,用数值模拟方法对CO2在地层中的运移过程进行了详细地刻画,分析了CO2的流动迁移、地层压力积聚过程及地层封存潜力。数值模型不但可以为工程的顺利进行提供技术支撑,而且可以节省人力财力。首先,根据实际监测数据对模拟参数进行校准,得到了合适的压力拟合曲线,确定了主要的水文地质参数。然后,对为期3 a的CO2续注工程进行预测,详细分析了CO2的晕扩散、溶解情况、地层压力变化情况、储层封存潜力等。得到如下结论:CO2在3 a内的最大迁移距离约为350 m;水裂可以有效提高CO2的注入性;隔离层能有效防止CO2逃逸。研究表明,尽管鄂尔多斯盆地属于低渗咸水层仍然能够有效安全地封存CO2。
CO2深部鹹水層地質封存被認為是減緩溫室效應的一種有效的工程技術手段。針對神華鄂爾多斯105 t/a CO2捕集與封存(CCS)示範項目,用數值模擬方法對CO2在地層中的運移過程進行瞭詳細地刻畫,分析瞭CO2的流動遷移、地層壓力積聚過程及地層封存潛力。數值模型不但可以為工程的順利進行提供技術支撐,而且可以節省人力財力。首先,根據實際鑑測數據對模擬參數進行校準,得到瞭閤適的壓力擬閤麯線,確定瞭主要的水文地質參數。然後,對為期3 a的CO2續註工程進行預測,詳細分析瞭CO2的暈擴散、溶解情況、地層壓力變化情況、儲層封存潛力等。得到如下結論:CO2在3 a內的最大遷移距離約為350 m;水裂可以有效提高CO2的註入性;隔離層能有效防止CO2逃逸。研究錶明,儘管鄂爾多斯盆地屬于低滲鹹水層仍然能夠有效安全地封存CO2。
CO2심부함수층지질봉존피인위시감완온실효응적일충유효적공정기술수단。침대신화악이다사105 t/a CO2포집여봉존(CCS)시범항목,용수치모의방법대CO2재지층중적운이과정진행료상세지각화,분석료CO2적류동천이、지층압력적취과정급지층봉존잠력。수치모형불단가이위공정적순리진행제공기술지탱,이차가이절성인력재력。수선,근거실제감측수거대모의삼수진행교준,득도료합괄적압력의합곡선,학정료주요적수문지질삼수。연후,대위기3 a적CO2속주공정진행예측,상세분석료CO2적훈확산、용해정황、지층압력변화정황、저층봉존잠력등。득도여하결론:CO2재3 a내적최대천이거리약위350 m;수렬가이유효제고CO2적주입성;격리층능유효방지CO2도일。연구표명,진관악이다사분지속우저삼함수층잉연능구유효안전지봉존CO2。
The geological sequestration of CO2 in deep saline aquifer is an effective countermeasure for reducing global warming and greenhouse effect. Based on the Shenhua Ordos CO2 capture and storage (CCS) pilot project, the behavior of CO2 in deep saline aquifers is investigated. The transport process of CO2 fluid, the pressure buildup of system and the reserves potential of sequestration are analyzed. This model can provide technological support and save human and financial resources for Shenhua CCS engineering project. First, the model is calibrated by comparing simulated results and measured pressure values. The suitable pressure curve is obtained and the main hydrological parameters are determined at this stage. Then an assumption of CO2 continuing injection for 3 years is simulated based on the former model. The CO2 diffusion, solution behavior, pressure variation and total reserves of strata are analyzed. The conclusions are drawn as follows: the largest distance of CO2 migration is about 350 m; hydraulic fracturing can improve CO2 injectivity obviously; cap rock can effectively prevent the escape of CO2. Simulation results demonstrate that even though the deep saline aquifers of Ordos basin has low penetrability, it is also suitable for CO2 sequestration.