岩土力学
巖土力學
암토역학
ROCK AND SOIL MECHANICS
2013年
7期
1893-1898
,共6页
黄土%结构性%结构性参数%应力-应变关系
黃土%結構性%結構性參數%應力-應變關繫
황토%결구성%결구성삼수%응력-응변관계
loess%structure%structural parameters%stress-strain relation
土体的结构是其强度、变形的内在决定因素,黄土的结构性由黄土颗粒之间的联结结构强度和摩擦结构强度所决定。由此,提出了黄土静力结构性参数即联结结构静力强度势参数me1、摩擦结构静力强度势参数me2以及结构静力强度势参数me。这些结构性参数具有明确的物理意义,既能反映黄土的综合结构性,又能分别反映黄土联结结构性和摩擦结构性。分析了静三轴应力条件下黄土的应力-应变特性以及黄土静力结构性参数的变化规律,建立了考虑黄土结构性的原状黄土应力-应变关系式,从而可以由结构性最弱的饱和重塑黄土的应力-应变曲线,通过结构参数模拟得到考虑结构性的原状黄土的应力-应变关系曲线。利用考虑结构性的原状黄土应力-应变关系式可整理计算出原状黄土的强度指标c、初始切线模量Ei、破坏比Rf、应力水平S以及切线弹性模量Et等参数,可应用于静荷载作用下黄土应力-应变有限元分析计算。
土體的結構是其彊度、變形的內在決定因素,黃土的結構性由黃土顆粒之間的聯結結構彊度和摩抆結構彊度所決定。由此,提齣瞭黃土靜力結構性參數即聯結結構靜力彊度勢參數me1、摩抆結構靜力彊度勢參數me2以及結構靜力彊度勢參數me。這些結構性參數具有明確的物理意義,既能反映黃土的綜閤結構性,又能分彆反映黃土聯結結構性和摩抆結構性。分析瞭靜三軸應力條件下黃土的應力-應變特性以及黃土靜力結構性參數的變化規律,建立瞭攷慮黃土結構性的原狀黃土應力-應變關繫式,從而可以由結構性最弱的飽和重塑黃土的應力-應變麯線,通過結構參數模擬得到攷慮結構性的原狀黃土的應力-應變關繫麯線。利用攷慮結構性的原狀黃土應力-應變關繫式可整理計算齣原狀黃土的彊度指標c、初始切線模量Ei、破壞比Rf、應力水平S以及切線彈性模量Et等參數,可應用于靜荷載作用下黃土應力-應變有限元分析計算。
토체적결구시기강도、변형적내재결정인소,황토적결구성유황토과립지간적련결결구강도화마찰결구강도소결정。유차,제출료황토정력결구성삼수즉련결결구정력강도세삼수me1、마찰결구정력강도세삼수me2이급결구정력강도세삼수me。저사결구성삼수구유명학적물리의의,기능반영황토적종합결구성,우능분별반영황토련결결구성화마찰결구성。분석료정삼축응력조건하황토적응력-응변특성이급황토정력결구성삼수적변화규률,건립료고필황토결구성적원상황토응력-응변관계식,종이가이유결구성최약적포화중소황토적응력-응변곡선,통과결구삼수모의득도고필결구성적원상황토적응력-응변관계곡선。이용고필결구성적원상황토응력-응변관계식가정리계산출원상황토적강도지표c、초시절선모량Ei、파배비Rf、응력수평S이급절선탄성모량Et등삼수,가응용우정하재작용하황토응력-응변유한원분석계산。
Soil structure is an intrinsic determinant of its strength and deformation. The loess structure is determined by the link structural strength and the friction structural strength. Based on this, some new and reasonable structural parameters of loess are suggested based on soil static strength, such as the link structural static strength potential parameter me 1, the friction structural static strength potential parameter me 2 and the structural static strength potential parameter me. These structural parameters have clear physical meaning, and can be used to reflect the comprehensive structure, the link structural and frictional structure of loess. The stress-strain behavior and the variation of the structural parameters of loess are studied under static triaxial stress conditions. The stress-strain formula of intact loess based on the structural parameters is provided. So we can simulate the stress-strain curve of intact loess by structure parameters and the stress-strain curve of saturated remolded loess which has the weakest structure. Some parameters such as strength index c, the value of the initial tangent modulus Ei, failure ratio Rf, stress level S and tangent modulus of elasticity Et can be worked out from the stress-strain formula of intact loess. These parameters can be used in finite element analysis of loess stress-strain under static loads.