中国农学通报
中國農學通報
중국농학통보
CHINESE AGRICULTURAL SCIENCE BULLETIN
2013年
13期
56-59
,共4页
于文颖%纪瑞鹏%冯锐%赵先丽%武晋雯%张淑杰%张玉书
于文穎%紀瑞鵬%馮銳%趙先麗%武晉雯%張淑傑%張玉書
우문영%기서붕%풍예%조선려%무진문%장숙걸%장옥서
松毛虫%气象因子%发生面积%预测预报
鬆毛蟲%氣象因子%髮生麵積%預測預報
송모충%기상인자%발생면적%예측예보
Dendrolimus%meteorological factor%occurrence area%forecasting
为了利用气象因子预测松毛虫的发生面积,基于辽宁省阜新县1983—2008年气象资料与松毛虫发生面积等资料进行相关分析,将筛选出的气象因子作为预报因子,通过多元回归法和人工神经网络法对松毛虫发生面积进行模拟和预测。结果表明,与松毛虫发生面积显著相关的5个气象因子包括:上一年12月平均最低温度、上一年11月平均相对湿度、上一年9月降水量、本年2月降水量和本年3月降水量;人工神经网络法的模拟和预测精度均优于多元回归法,多元回归法的预测精度58.2%,人工神经网络法的预测精度为83.6%;人工神经网络法更适用于辽宁地区松毛虫发生面积的预报。
為瞭利用氣象因子預測鬆毛蟲的髮生麵積,基于遼寧省阜新縣1983—2008年氣象資料與鬆毛蟲髮生麵積等資料進行相關分析,將篩選齣的氣象因子作為預報因子,通過多元迴歸法和人工神經網絡法對鬆毛蟲髮生麵積進行模擬和預測。結果錶明,與鬆毛蟲髮生麵積顯著相關的5箇氣象因子包括:上一年12月平均最低溫度、上一年11月平均相對濕度、上一年9月降水量、本年2月降水量和本年3月降水量;人工神經網絡法的模擬和預測精度均優于多元迴歸法,多元迴歸法的預測精度58.2%,人工神經網絡法的預測精度為83.6%;人工神經網絡法更適用于遼寧地區鬆毛蟲髮生麵積的預報。
위료이용기상인자예측송모충적발생면적,기우요녕성부신현1983—2008년기상자료여송모충발생면적등자료진행상관분석,장사선출적기상인자작위예보인자,통과다원회귀법화인공신경망락법대송모충발생면적진행모의화예측。결과표명,여송모충발생면적현저상관적5개기상인자포괄:상일년12월평균최저온도、상일년11월평균상대습도、상일년9월강수량、본년2월강수량화본년3월강수량;인공신경망락법적모의화예측정도균우우다원회귀법,다원회귀법적예측정도58.2%,인공신경망락법적예측정도위83.6%;인공신경망락법경괄용우료녕지구송모충발생면적적예보。
In order to forecast the occurrence area of Dendrolimus by using meteorological factors, the author analyzed the relationships between meteorological factors and occurrence area of Dendrolimus with the data from 1983 to 2008 in Fuxin County, Liaoning. The occurrence area of Dendrolimus was simulated and predict on the selected meteorological factors as forecast factors, using multiple element regression and artificial neural network methods. The results showed that: 5 meteorological factors were significantly correlated with the occurrence area, including the mean minimum temperature of preceding December, the mean relative humidity of preceding November, the precipitation of preceding September, the precipitation of current February and current March. The simulation and prediction accuracy rate of the artificial neural network method was better than that of the multiple element regression method, the multiple element regression method reached over 58.2% while the artificial neural network method reached over 83.6%. The artificial neural network method was more appropriate for the occurrence area forecast of Dendrolimus in Liaoning.