中国农学通报
中國農學通報
중국농학통보
CHINESE AGRICULTURAL SCIENCE BULLETIN
2013年
18期
193-199
,共7页
田雪%解鑫%周晓杭%葛菁萍%凌宏志%宋刚%平文祥
田雪%解鑫%週曉杭%葛菁萍%凌宏誌%宋剛%平文祥
전설%해흠%주효항%갈정평%릉굉지%송강%평문상
地衣芽孢杆菌%β-甘露聚糖酶%发酵动力学%分批发酵
地衣芽孢桿菌%β-甘露聚糖酶%髮酵動力學%分批髮酵
지의아포간균%β-감로취당매%발효동역학%분비발효
Bacillus licheniformis%β-mannanase%fermentation kinetics%batch fermentation
为提高β-甘露聚糖酶产量,探究其发酵生产的规律,以β-甘露聚糖酶高产菌株地衣芽孢杆菌(Bacillus licheniformis)HDYM-04为供试菌株,以初始魔芋粉加入量2%、接种量6.7%、初始pH 8.0、培养温度37℃、搅拌速率300 r/min、通气量3 L/min、发酵周期30 h为基础发酵条件进行5 L发酵罐发酵。基于 Logistic 方程和 Luedeking-Piret 等方程建立了该菌株的菌体生长、产物生成、底物消耗3个分批发酵动力学模型,其中菌体生长动力学模型为:dXdt =0.431X(1- X15.522)、底物消耗动力学模型为- dSdt =1.11dXdt +0.0002dPdt +0.0008X 、产物生成动力学模型为 dPdt =133.1dXdt +222.87X ,其相关系数R2分别为0.99021、0.98908、0.98812,能真实描述菌体发酵过程中菌体生长、酶的合成以及底物消耗的情况。
為提高β-甘露聚糖酶產量,探究其髮酵生產的規律,以β-甘露聚糖酶高產菌株地衣芽孢桿菌(Bacillus licheniformis)HDYM-04為供試菌株,以初始魔芋粉加入量2%、接種量6.7%、初始pH 8.0、培養溫度37℃、攪拌速率300 r/min、通氣量3 L/min、髮酵週期30 h為基礎髮酵條件進行5 L髮酵罐髮酵。基于 Logistic 方程和 Luedeking-Piret 等方程建立瞭該菌株的菌體生長、產物生成、底物消耗3箇分批髮酵動力學模型,其中菌體生長動力學模型為:dXdt =0.431X(1- X15.522)、底物消耗動力學模型為- dSdt =1.11dXdt +0.0002dPdt +0.0008X 、產物生成動力學模型為 dPdt =133.1dXdt +222.87X ,其相關繫數R2分彆為0.99021、0.98908、0.98812,能真實描述菌體髮酵過程中菌體生長、酶的閤成以及底物消耗的情況。
위제고β-감로취당매산량,탐구기발효생산적규률,이β-감로취당매고산균주지의아포간균(Bacillus licheniformis)HDYM-04위공시균주,이초시마우분가입량2%、접충량6.7%、초시pH 8.0、배양온도37℃、교반속솔300 r/min、통기량3 L/min、발효주기30 h위기출발효조건진행5 L발효관발효。기우 Logistic 방정화 Luedeking-Piret 등방정건립료해균주적균체생장、산물생성、저물소모3개분비발효동역학모형,기중균체생장동역학모형위:dXdt =0.431X(1- X15.522)、저물소모동역학모형위- dSdt =1.11dXdt +0.0002dPdt +0.0008X 、산물생성동역학모형위 dPdt =133.1dXdt +222.87X ,기상관계수R2분별위0.99021、0.98908、0.98812,능진실묘술균체발효과정중균체생장、매적합성이급저물소모적정황。
In order to increase the production of β-mannase and research its regular pattern during fermentation process, high β-mannase producing strain, Bacillus licheniformis HDYM-04, was used to investigate the kinetics model based on the optimal fermentation conditions: the strain was fermentated at 37℃for 30 h with agitation speed at 300 r/min and aeration rate at 3 L/min in a 5 L fermantor, the initial addition of konjac flour was 2% (w/v) and the initial pH value of medium was 8.0, the inoculum was 6.7% (v/v). The batch fermentation kinetic models were established (cell growth kinetic model, substrate depletion kinetic model, production formation kinetic model) bases on Logistic and Luedeking-Piret equations. Cell growth kinetic model was dX dt = 0.431X(1 - X15.522) , substrate depletion kinetic model was- dSdt = 1.11dXdt + 0.0002dPdt + 0.0008X , and production formation kinetic model was dt = 133.1dXdt + 222.87X . The correlation coefficients R2 of the three equations were 0.99021, 0.98908 and 0.98812, respectively, which indicated a good correlation between experimental values and models. Therefore, the equations could be used to describe the process of cell growth, enzyme synthesis and substrate consumption by HDYM-04 during batch fermentation. The establishment of batch fermentation kinetic models (cell growth dP kinetic model, substrate depletion kinetic model, production formation kinetic model) could lay a foundation for theory and provide practical instruction for the application of HDYM-04 in industry.