采矿与安全工程学报
採礦與安全工程學報
채광여안전공정학보
JOURNAL OF MINING AND SAFETY ENGINEERING
2013年
4期
489-494
,共6页
大断面%破碎围岩%多次返修%蠕变模拟%联合支护
大斷麵%破碎圍巖%多次返脩%蠕變模擬%聯閤支護
대단면%파쇄위암%다차반수%연변모의%연합지호
large section%fracture rock mass%repeatedly repairing%creep simulation%combined sup-port
对大断面破碎围岩多次返修巷硐,锚网索支护方式难以有效控制其强流变。结合焦煤公司中马村矿39#泵房多次返修的状况,认为高应力作用下的不稳定强流变岩层,支架受力不均等因素是硐室围岩失稳的主因,提出了主动支护与被动支护联合修复方案:一次锚网索支护,二次封闭刚性支架联合支护,三次围岩注浆加固。采用蠕变数值模拟方法对原支护和返修加固方案进行了分析,结果表明:原方案在360 d时的断面收缩率达到92.2%,顶板最大下沉量达到2792 mm,围岩处在加速蠕变失稳阶段;返修加固方案在1000 d时的顶板最大下沉量仅56.8 mm,围岩处在蠕变稳定阶段;锚索作用在完整岩体范围内,锚杆大部分作用在塑性圈范围内,注浆范围外应力等值线密集,其峰值随时间的延长而增大,且逐渐内移。工业性试验表明:224 d时,硐室表面最大位移为18 mm,变形速率小于0.5 mm/d,修复加固取得了成功。
對大斷麵破碎圍巖多次返脩巷硐,錨網索支護方式難以有效控製其彊流變。結閤焦煤公司中馬村礦39#泵房多次返脩的狀況,認為高應力作用下的不穩定彊流變巖層,支架受力不均等因素是硐室圍巖失穩的主因,提齣瞭主動支護與被動支護聯閤脩複方案:一次錨網索支護,二次封閉剛性支架聯閤支護,三次圍巖註漿加固。採用蠕變數值模擬方法對原支護和返脩加固方案進行瞭分析,結果錶明:原方案在360 d時的斷麵收縮率達到92.2%,頂闆最大下沉量達到2792 mm,圍巖處在加速蠕變失穩階段;返脩加固方案在1000 d時的頂闆最大下沉量僅56.8 mm,圍巖處在蠕變穩定階段;錨索作用在完整巖體範圍內,錨桿大部分作用在塑性圈範圍內,註漿範圍外應力等值線密集,其峰值隨時間的延長而增大,且逐漸內移。工業性試驗錶明:224 d時,硐室錶麵最大位移為18 mm,變形速率小于0.5 mm/d,脩複加固取得瞭成功。
대대단면파쇄위암다차반수항동,묘망색지호방식난이유효공제기강류변。결합초매공사중마촌광39#빙방다차반수적상황,인위고응력작용하적불은정강류변암층,지가수력불균등인소시동실위암실은적주인,제출료주동지호여피동지호연합수복방안:일차묘망색지호,이차봉폐강성지가연합지호,삼차위암주장가고。채용연변수치모의방법대원지호화반수가고방안진행료분석,결과표명:원방안재360 d시적단면수축솔체도92.2%,정판최대하침량체도2792 mm,위암처재가속연변실은계단;반수가고방안재1000 d시적정판최대하침량부56.8 mm,위암처재연변은정계단;묘색작용재완정암체범위내,묘간대부분작용재소성권범위내,주장범위외응력등치선밀집,기봉치수시간적연장이증대,차축점내이。공업성시험표명:224 d시,동실표면최대위이위18 mm,변형속솔소우0.5 mm/d,수복가고취득료성공。
To large section chamber with fractured surrounding rock and repeatedly repairing, strong rheology cannot be controlled effectively with bolt-wire-cable support style. According to the repeatedly repairing 39# pump house of Zhongmacun Colliery, Jiaozuo Coal Company, the main factors on insta-bility of surrounding rock include strong rheology strata influenced by high stress, uneven loading on steel timbers. Repair scheme combined initiative and passive support is proposed, which includes pri-mary bolt-wire mesh-cable, secondary closed steel timber and third grouting reinforcement. Original and repairing support is analyzed with creep numerical simulation. The results indicate that shrinkage percentage of chamber section is 92.2% within 360 days, and the maximum roof subsidence is 2 792 mm, and accelerated creep phase of surrounding rock appears. The maximum roof subsidence is 56.8 mm within 1 000 days, and stable creep phase of surrounding rock appears with repairing method. Cables are anchored in intact rock mass, but most bolts are in plastic zone. Density of stress contour lines is very intensive outside of grouting range, whose peak value is increasing and moving gradually to deep surrounding rock with the extension of time. The field experiment shows that maximum displacement of chamber is 18 mm, and convergence ratio is less than 0.5 mm/d after 224 days. So the repair scheme of the chamber is successful.