后勤工程学院学报
後勤工程學院學報
후근공정학원학보
JOURNAL OF LOGISTICAL ENGINEERING UNIVERSITY
2013年
4期
74-79
,共6页
刘洪娟%甘明%肖育%姜玉宏
劉洪娟%甘明%肖育%薑玉宏
류홍연%감명%초육%강옥굉
军事物流%设施规模%RBF神经网络%预测
軍事物流%設施規模%RBF神經網絡%預測
군사물류%설시규모%RBF신경망락%예측
military logistics%facilities scale%RBF neural network%prediction
确定合理的军事物流设施规模对于成功实施军事后勤保障十分重要。提出了基于RBF神经网络的军事物流设施规模预测模型的建模方法,该方法旨在确定军事物流设施规模与其影响因素之间的非线性关系;采用算例说明了基于RBF神经网络的军事物流设施规模预测的具体做法,对军事物流设施规模的确定具有指导意义。
確定閤理的軍事物流設施規模對于成功實施軍事後勤保障十分重要。提齣瞭基于RBF神經網絡的軍事物流設施規模預測模型的建模方法,該方法旨在確定軍事物流設施規模與其影響因素之間的非線性關繫;採用算例說明瞭基于RBF神經網絡的軍事物流設施規模預測的具體做法,對軍事物流設施規模的確定具有指導意義。
학정합리적군사물류설시규모대우성공실시군사후근보장십분중요。제출료기우RBF신경망락적군사물류설시규모예측모형적건모방법,해방법지재학정군사물류설시규모여기영향인소지간적비선성관계;채용산례설명료기우RBF신경망락적군사물류설시규모예측적구체주법,대군사물류설시규모적학정구유지도의의。
It is important for successfully implementing the military logistics support to determine the reasonable facilities scale of military logistics. This paper puts forward the modeling method for prediction of military logistics facilities scale based on RBF neural network. The purpose of this method is for determining the nonlinear relationship between military logistics facilities scale and its related influence factors. Detailed operations of ascertaining facilities scale of military logistics have been illustrated by usage of an example. This method is a guidance for determining the military logistics facilities scale.