光电技术应用
光電技術應用
광전기술응용
ELECTRO-OPTIC WARFARE & RADAR PASSIVE COUNTERMEASURES
2013年
4期
49-54
,共6页
文华荣%李秩%冯一%吴晓迪
文華榮%李秩%馮一%吳曉迪
문화영%리질%풍일%오효적
不变矩%BP神经网络%目标识别%Levenberg-Marquardt算法
不變矩%BP神經網絡%目標識彆%Levenberg-Marquardt算法
불변구%BP신경망락%목표식별%Levenberg-Marquardt산법
invariant moment%back propagation (BP) neural network%target recognition%Levenberg-Mar-quardt algorithm
基于Hu不变矩的尺度不变性,以图像的不变矩特征作为输入,建立基于批训练的改进型误差反向传播(BP)神经网络。运用基于Bayesian正则化的Levenberg-Marquardt算法优化误差函数计算精度,改进网络,实现参数最优化组合。通过MAT?LAB环境,建立了基于不变矩的改进BP神经网络目标识别模型。实验表明,该方法实现了对目标的准确识别和对干扰图像的正确判断。
基于Hu不變矩的呎度不變性,以圖像的不變矩特徵作為輸入,建立基于批訓練的改進型誤差反嚮傳播(BP)神經網絡。運用基于Bayesian正則化的Levenberg-Marquardt算法優化誤差函數計算精度,改進網絡,實現參數最優化組閤。通過MAT?LAB環境,建立瞭基于不變矩的改進BP神經網絡目標識彆模型。實驗錶明,該方法實現瞭對目標的準確識彆和對榦擾圖像的正確判斷。
기우Hu불변구적척도불변성,이도상적불변구특정작위수입,건립기우비훈련적개진형오차반향전파(BP)신경망락。운용기우Bayesian정칙화적Levenberg-Marquardt산법우화오차함수계산정도,개진망락,실현삼수최우화조합。통과MAT?LAB배경,건립료기우불변구적개진BP신경망락목표식별모형。실험표명,해방법실현료대목표적준학식별화대간우도상적정학판단。
Based on the geometrical invariability of Hu invariant moment, and taking the characteristics of image invariant moment as an input, an improved error back propagation (BP) neural network for batch training is established. According to Bayesian normalization Levenberg-Marquardt algorithm, the calculation accuracy of error functions is optimized and the network is improved so as to realize the optimized parameter combination. An improved BP neural network object recognition model based on invariant moment is built in MATLAB envi?ronment. Experimental results show that accurate target recognition and correct interferential image estimation are implemented with the method.