软件学报
軟件學報
연건학보
JOURNAL OF SOFTWARE
2013年
5期
1053-1072
,共20页
图形处理器%高维数据流%典型相关性%统一计算设备架构%降维约简技术
圖形處理器%高維數據流%典型相關性%統一計算設備架構%降維約簡技術
도형처리기%고유수거류%전형상관성%통일계산설비가구%강유약간기술
graphic processing unit (GPU)%high-dimensional data stream%canonical correlation%compute unified device architecture%dimensionality-reduction technique
为了满足在计算资源受限的环境下高维数据流处理的实时性要求,提出一种方法——基于 GPU(graphic processing unit)的非规则流中高维数据流的处理模型和具体的可行架构,并分析设计了相关的并行算法。该六层模型是将 GPU 处理数据的高宽带性能结合进滑动窗口中数据流的分析,进而在该框架下基于统一计算设备架构(compute unified device architecture,简称CUDA),使用数据立方模型以及降维约简技术并行分析了多条高维数据流的典型相关性。理论分析和实验结果均表明,该并行处理方法能够在线精确地识别同步滑动窗口模式下高维数据流之间的相关性。相对于纯 CPU 方法,该方法具有显著的速度优势,很好地满足了高维数据流的实时性需求,可以作为通用的分析方法广泛应用于数据流挖掘领域。
為瞭滿足在計算資源受限的環境下高維數據流處理的實時性要求,提齣一種方法——基于 GPU(graphic processing unit)的非規則流中高維數據流的處理模型和具體的可行架構,併分析設計瞭相關的併行算法。該六層模型是將 GPU 處理數據的高寬帶性能結閤進滑動窗口中數據流的分析,進而在該框架下基于統一計算設備架構(compute unified device architecture,簡稱CUDA),使用數據立方模型以及降維約簡技術併行分析瞭多條高維數據流的典型相關性。理論分析和實驗結果均錶明,該併行處理方法能夠在線精確地識彆同步滑動窗口模式下高維數據流之間的相關性。相對于純 CPU 方法,該方法具有顯著的速度優勢,很好地滿足瞭高維數據流的實時性需求,可以作為通用的分析方法廣汎應用于數據流挖掘領域。
위료만족재계산자원수한적배경하고유수거류처리적실시성요구,제출일충방법——기우 GPU(graphic processing unit)적비규칙류중고유수거류적처리모형화구체적가행가구,병분석설계료상관적병행산법。해륙층모형시장 GPU 처리수거적고관대성능결합진활동창구중수거류적분석,진이재해광가하기우통일계산설비가구(compute unified device architecture,간칭CUDA),사용수거립방모형이급강유약간기술병행분석료다조고유수거류적전형상관성。이론분석화실험결과균표명,해병행처리방법능구재선정학지식별동보활동창구모식하고유수거류지간적상관성。상대우순 CPU 방법,해방법구유현저적속도우세,흔호지만족료고유수거류적실시성수구,가이작위통용적분석방법엄범응용우수거류알굴영역。
This paper addresses an approach that uses GPU (graphic processing unit)-based processing architecture model and its parallel algorithm for high-dimensional data streams over the irregular streams in order to satisfy the real-time requirement under the resource-constraints. This six layers model combines the GPU high wide-band property of data processing with analysis data stream in a sliding window. Next, canonical correlation analysis is carried out between two high-dimensional data streams, by a data cube pattern, and a dimensionality-reduction method in this framework based on compute unified device architecture (CUDA). The theoretical analysis and experimental results show that the parallel processing method can detect correlations on high dimension data streams, online, accurately in the synchronous sliding window mode. According to the pure CPU method, this technique has significant speed advantage and conducts the real-time requirement of high-dimensional data stream very well. It provides a common strategy for the applied field of data stream mining.