软件学报
軟件學報
연건학보
JOURNAL OF SOFTWARE
2013年
6期
1165-1176
,共12页
苏生%于海杰%吴正华%姚远哲%张良
囌生%于海傑%吳正華%姚遠哲%張良
소생%우해걸%오정화%요원철%장량
合作协同演化算法%多目标%分销供应链%调度%协商
閤作協同縯化算法%多目標%分銷供應鏈%調度%協商
합작협동연화산법%다목표%분소공응련%조도%협상
cooperative co-evolutionary algorithm%multi-objective%distribution supply chain%scheduling%negotiation
研究了在制造商占优并优先调度的分销供应链中,多个分销商同时与制造商进行协商以改善自身调度的问题,建立了基于补偿的多目标协商调度模型,提出了同时实施分销商局部演化计算与制造商全局演化计算的新型多目标合作协同演化算法 GLCCEC.提出了制造商全局精英解的跳跃渐变解组合策略及全局非支配解集实时更新策略,设计了保持局部作业顺序约束下的分销商局部解全局化动态规划算法.实验结果表明,GLCCEC算法能够在不损害制造商调度的条件下有效改善每个分销商的调度,所获得的非支配解集不仅目标值优于现有的3种主要合作协同演化算法MOCCGA,NSCCGA,GBCCGA,而且具有良好的解分散度.
研究瞭在製造商佔優併優先調度的分銷供應鏈中,多箇分銷商同時與製造商進行協商以改善自身調度的問題,建立瞭基于補償的多目標協商調度模型,提齣瞭同時實施分銷商跼部縯化計算與製造商全跼縯化計算的新型多目標閤作協同縯化算法 GLCCEC.提齣瞭製造商全跼精英解的跳躍漸變解組閤策略及全跼非支配解集實時更新策略,設計瞭保持跼部作業順序約束下的分銷商跼部解全跼化動態規劃算法.實驗結果錶明,GLCCEC算法能夠在不損害製造商調度的條件下有效改善每箇分銷商的調度,所穫得的非支配解集不僅目標值優于現有的3種主要閤作協同縯化算法MOCCGA,NSCCGA,GBCCGA,而且具有良好的解分散度.
연구료재제조상점우병우선조도적분소공응련중,다개분소상동시여제조상진행협상이개선자신조도적문제,건립료기우보상적다목표협상조도모형,제출료동시실시분소상국부연화계산여제조상전국연화계산적신형다목표합작협동연화산법 GLCCEC.제출료제조상전국정영해적도약점변해조합책략급전국비지배해집실시경신책략,설계료보지국부작업순서약속하적분소상국부해전국화동태규화산법.실험결과표명,GLCCEC산법능구재불손해제조상조도적조건하유효개선매개분소상적조도,소획득적비지배해집불부목표치우우현유적3충주요합작협동연화산법MOCCGA,NSCCGA,GBCCGA,이차구유량호적해분산도.
It is investigated that multiple distributors simultaneously negotiate with a manufacturer to improve themselves schedules on a distribution supply chain in which manufacturer has stronger power than distributors and does scheduling decision prior to distributors. A compensation based negotiation scheduling model is built. A novel multi-objective cooperative co-evolutionary algorithm (GLCCEC) that concurrently implements local evolutionary computing of distributors and global evolutionary computing of manufacturer is proposed. Global elite solution combination strategy with gradually gene skipping change and real time updating of global non-dominated solution set are designed for manufacturer. A dynamic programming algorithm with constraint of retaining sequence of local schedule is designed in order to get global solution from a local solution of distributor. Computational experiments show that GLCCEC algorithm can effectively improve schedule of each distributor with no deterioration of manufacturer’s schedule. Moreover, the non-dominated solutions of GLCCEC not only are better than that of other best cooperative co-evolutionary algorithms:MOCCGA, NSCCGA, GBCCGA, but also has good spread in solution space.