红外与激光工程
紅外與激光工程
홍외여격광공정
INFRARED AND LASER ENGINEERING
2013年
6期
1485-1490
,共6页
光学制造%超光滑%离子束%面形精度%表面粗糙度
光學製造%超光滑%離子束%麵形精度%錶麵粗糙度
광학제조%초광활%리자속%면형정도%표면조조도
optical fabrication%ultra-smooth%ion beam figuring%surface figure accuracy%surface roughness
为满足193 nm投影光刻物镜对光学元件不同频段的精度要求,提出了一种将超光滑加工和高精度面形修正相结合的超高精度光学元件加工技术。分别介绍了微射流超光滑加工技术和离子束高精度面形修正技术的基本原理。在自行研制的微射流超光滑加工机床和购置的离子束加工机床上对一直径100 mm的熔石英平面镜进行了超高精度加工,经两次超光滑和一次离子束迭代加工后其面形由初始的rms值35.042 nm改善到3.393 nm,中频粗糙度由rms值0.389 nm改善到0.309 nm,高频粗糙度rms值由0.218 nm改善到0.0802 nm。最后采用功率谱密度函数对加工前后的光学元件表面质量进行了分析评价。结果表明:采用微射流超光滑加工技术和离子束加工技术相结合的加工方法可以全面提升光学元件的面形精度和中、高频粗糙度,通过合理的工艺优化完全能够获得满足193 nm投影光刻物镜要求的超高精度光学元件。
為滿足193 nm投影光刻物鏡對光學元件不同頻段的精度要求,提齣瞭一種將超光滑加工和高精度麵形脩正相結閤的超高精度光學元件加工技術。分彆介紹瞭微射流超光滑加工技術和離子束高精度麵形脩正技術的基本原理。在自行研製的微射流超光滑加工機床和購置的離子束加工機床上對一直徑100 mm的鎔石英平麵鏡進行瞭超高精度加工,經兩次超光滑和一次離子束迭代加工後其麵形由初始的rms值35.042 nm改善到3.393 nm,中頻粗糙度由rms值0.389 nm改善到0.309 nm,高頻粗糙度rms值由0.218 nm改善到0.0802 nm。最後採用功率譜密度函數對加工前後的光學元件錶麵質量進行瞭分析評價。結果錶明:採用微射流超光滑加工技術和離子束加工技術相結閤的加工方法可以全麵提升光學元件的麵形精度和中、高頻粗糙度,通過閤理的工藝優化完全能夠穫得滿足193 nm投影光刻物鏡要求的超高精度光學元件。
위만족193 nm투영광각물경대광학원건불동빈단적정도요구,제출료일충장초광활가공화고정도면형수정상결합적초고정도광학원건가공기술。분별개소료미사류초광활가공기술화리자속고정도면형수정기술적기본원리。재자행연제적미사류초광활가공궤상화구치적리자속가공궤상상대일직경100 mm적용석영평면경진행료초고정도가공,경량차초광활화일차리자속질대가공후기면형유초시적rms치35.042 nm개선도3.393 nm,중빈조조도유rms치0.389 nm개선도0.309 nm,고빈조조도rms치유0.218 nm개선도0.0802 nm。최후채용공솔보밀도함수대가공전후적광학원건표면질량진행료분석평개。결과표명:채용미사류초광활가공기술화리자속가공기술상결합적가공방법가이전면제승광학원건적면형정도화중、고빈조조도,통과합리적공예우화완전능구획득만족193 nm투영광각물경요구적초고정도광학원건。
In order to satisfy the precision in different frequency bands of the 193 nm projection lens, an ultra-precision optical fabrication technology was introduced, which includes ultra-smooth polishing and high-precision surface figuring. The mechanisms of micro fluid jet ultra-smooth surfaces polishing (MJP) and ion beam figuring (IBF) were introduced. To demonstrate the process, an 100 mm fused silica flat optical element was polished on the ultra-smooth polishing and IBF machine. Through two MJP and one IBF iteration, its surface figure accuracy root-mean-square (rms) is improved from initial 35.042 nm to final 3.393 nm, the intermediate frequency surface roughness root-mean-square (rms) is improved from initial 0.389 nm to final 0.303 nm, and the high frequency surface roughness root-mean-square (rms) is improved from initial 0.218 nm to final 0.0802 nm. At last, the surface quality of the lens before and after polishing was analyzed by power spectral density. The result shows that the surface figure accuracy and roughness of optical element could be all highly improved by MJP and IBF union, and the ultra-precision element of 193 nm projection lens will be realized through optimizing the technological parameters.