通信学报
通信學報
통신학보
JOURNAL OF CHINA INSTITUTE OF COMMUNICATIONS
2013年
7期
159-166,173
,共9页
刘文杰%伍之昂%曹杰%潘金贵
劉文傑%伍之昂%曹傑%潘金貴
류문걸%오지앙%조걸%반금귀
图像索引%兴趣模式%噪声过滤%聚类分析
圖像索引%興趣模式%譟聲過濾%聚類分析
도상색인%흥취모식%조성과려%취류분석
image indexing%interesting pattern%noise filtering%cluster analysis
针对图像数据噪声大和高维稀疏的特点,提出了一种基于噪声过滤和Info-Kmeans聚类的图像索引构建方法。首先,利用余弦兴趣模式过滤噪声。其次,提出了一种新的Info-Kmeans聚类算法,该算法不仅避免KL-divergence计算过程中的零值困境问题,还能融合以成对约束出现的先验知识。最后,在LFW和Oxford_5K 2个图像数据集上的实验表明:噪声过滤能显著提高聚类性能;Info-Kmeans比已有聚类工具具有更优越的性能。
針對圖像數據譟聲大和高維稀疏的特點,提齣瞭一種基于譟聲過濾和Info-Kmeans聚類的圖像索引構建方法。首先,利用餘絃興趣模式過濾譟聲。其次,提齣瞭一種新的Info-Kmeans聚類算法,該算法不僅避免KL-divergence計算過程中的零值睏境問題,還能融閤以成對約束齣現的先驗知識。最後,在LFW和Oxford_5K 2箇圖像數據集上的實驗錶明:譟聲過濾能顯著提高聚類性能;Info-Kmeans比已有聚類工具具有更優越的性能。
침대도상수거조성대화고유희소적특점,제출료일충기우조성과려화Info-Kmeans취류적도상색인구건방법。수선,이용여현흥취모식과려조성。기차,제출료일충신적Info-Kmeans취류산법,해산법불부피면KL-divergence계산과정중적령치곤경문제,환능융합이성대약속출현적선험지식。최후,재LFW화Oxford_5K 2개도상수거집상적실험표명:조성과려능현저제고취류성능;Info-Kmeans비이유취류공구구유경우월적성능。
Constructing high-quality content-based image indexing is fairly difficult due to the large amount of noise in the data set and the high-dimension and the sparseness of the image data. To meet this challenge, a novel noise-filtering and clustering was proposed using Info-Kmeans based image indexing construction method. Firstly, a noise-filtering method using the cosine interesting patterns was presented. Secondly, a novel Info-Kmeans algorithm was proposed which could avoid the zero-feature dilemma caused by the use of KL-divergence and exploit the prior knowledge in the form of pair constraints. The experimental results on the two image data sets, LFW and Oxford_5K, well demonstrate that: noise filter can improve the clustering performance remarkably and the novel Info-Kmeans algorithm yields better results than the existing clustering tool.