通信学报
通信學報
통신학보
JOURNAL OF CHINA INSTITUTE OF COMMUNICATIONS
2013年
7期
59-70
,共12页
宋传鸣%郭延文%王相海%刘丹
宋傳鳴%郭延文%王相海%劉丹
송전명%곽연문%왕상해%류단
视频编码%运动估计%块匹配%模糊量化%低比特分辨率
視頻編碼%運動估計%塊匹配%模糊量化%低比特分辨率
시빈편마%운동고계%괴필배%모호양화%저비특분변솔
video coding%motion estimation%block matching%fuzzy quantization%low bit-resolution
提出了一种2 bit深度像素的运动估计算法。首先,将像素深度的降采样过程形式化为区间分划和区间映射2个步骤,其中前者为多对一映射,决定着运动估计性能,后者为一一映射;其次,提出一种非均匀量化方法求解区间分划的3个初始阈值,并利用隶属度函数对初始阈值细化,从而克服信号噪声等因素导致的初始阈值周围像素值的误匹配;再次,讨论了适用于2 bit深度像素运动估计的误差度量准则,进而提出了基于模糊量化和2 bit深度像素的运动估计算法;最后,借助信号自相关函数,建立比特深度转换误差—运动向量精度模型来估计该算法所能达到的预测精度。实验结果证明,对于多种类型的视频序列,尤其是场景细节和物体运动比较复杂者,该算法始终能保持较高的估计精度,运动补偿的平均峰值信噪比较之传统2 bit深度像素的运动估计提高0.27 dB。
提齣瞭一種2 bit深度像素的運動估計算法。首先,將像素深度的降採樣過程形式化為區間分劃和區間映射2箇步驟,其中前者為多對一映射,決定著運動估計性能,後者為一一映射;其次,提齣一種非均勻量化方法求解區間分劃的3箇初始閾值,併利用隸屬度函數對初始閾值細化,從而剋服信號譟聲等因素導緻的初始閾值週圍像素值的誤匹配;再次,討論瞭適用于2 bit深度像素運動估計的誤差度量準則,進而提齣瞭基于模糊量化和2 bit深度像素的運動估計算法;最後,藉助信號自相關函數,建立比特深度轉換誤差—運動嚮量精度模型來估計該算法所能達到的預測精度。實驗結果證明,對于多種類型的視頻序列,尤其是場景細節和物體運動比較複雜者,該算法始終能保持較高的估計精度,運動補償的平均峰值信譟比較之傳統2 bit深度像素的運動估計提高0.27 dB。
제출료일충2 bit심도상소적운동고계산법。수선,장상소심도적강채양과정형식화위구간분화화구간영사2개보취,기중전자위다대일영사,결정착운동고계성능,후자위일일영사;기차,제출일충비균균양화방법구해구간분화적3개초시역치,병이용대속도함수대초시역치세화,종이극복신호조성등인소도치적초시역치주위상소치적오필배;재차,토론료괄용우2 bit심도상소운동고계적오차도량준칙,진이제출료기우모호양화화2 bit심도상소적운동고계산법;최후,차조신호자상관함수,건립비특심도전환오차—운동향량정도모형래고계해산법소능체도적예측정도。실험결과증명,대우다충류형적시빈서렬,우기시장경세절화물체운동비교복잡자,해산법시종능보지교고적고계정도,운동보상적평균봉치신조비교지전통2 bit심도상소적운동고계제고0.27 dB。
A motion estimation algorithm was proposed using 2 bit-depth pixels. The reduction of pixel depth was first formalized by two successive steps, namely interval partitioning and interval mapping. The former is a many-to-one mapping which determines motion estimation performance, while the latter is a one-to-one mapping. A non-uniform quantization method was then presented to compute three initial thresholds of the interval partitioning. These initial thresholds were subsequently refined by using a membership function to solve the mismatch of pixel values near them caused by signal noise and so on. Afterwards, a matching criterion was discussed suitable for the motion estimation using 2 bit- depth pixels. A novel motion estimation algorithm was consequently addressed based on 2 bit-depth pixels and fuzzy quantization. To further predict the precision of the proposed algorithm, a bit resolution reduction error-motion vector precision model was built by exploiting the auto-correlation function. Extensive experimental results show that the pro-posed algorithm can always achieve high motion estimation precision for video sequences with various characteristics, especially for those with detailed scene and complex motion. Compared with traditional 2 bit motion estimation, the pro-posed algorithm gains 0.27 dB improvement in terms of average peak signal-to-noise ratio of motion compensation.