电子与信息学报
電子與信息學報
전자여신식학보
JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY
2013年
7期
1619-1623
,共5页
信息处理%多维spike train%高阶多维泊松模型%贝叶斯原理%预测分类模型
信息處理%多維spike train%高階多維泊鬆模型%貝葉斯原理%預測分類模型
신식처리%다유spike train%고계다유박송모형%패협사원리%예측분류모형
Information processing%Multi spike train%High-order multiple Possion model%Bayes theory%Prediction classification model
神经元集群编码和 spike train 分析是神经信息处理的关键问题。该文介绍了一种利用高阶多维泊松模型对spike train进行分类预测的方法,并从spike的强度分布、匹配准确性和集成策略上进行了数学论证。最后利用该方法在大鼠U迷宫实验中选取20组作为训练集进行分类测试,实验结果表明,利用该方法得到的分类准确率在97%左右。
神經元集群編碼和 spike train 分析是神經信息處理的關鍵問題。該文介紹瞭一種利用高階多維泊鬆模型對spike train進行分類預測的方法,併從spike的彊度分佈、匹配準確性和集成策略上進行瞭數學論證。最後利用該方法在大鼠U迷宮實驗中選取20組作為訓練集進行分類測試,實驗結果錶明,利用該方法得到的分類準確率在97%左右。
신경원집군편마화 spike train 분석시신경신식처리적관건문제。해문개소료일충이용고계다유박송모형대spike train진행분류예측적방법,병종spike적강도분포、필배준학성화집성책략상진행료수학론증。최후이용해방법재대서U미궁실험중선취20조작위훈련집진행분류측시,실험결과표명,이용해방법득도적분류준학솔재97%좌우。
Neural population encoding and analysis of spike train play an important role in the field of neural inforamtion processing. In this study, a classification method of spike train is proposed based on high-order multiple Possion model, and a mathematic deduction is made in the spike instensity distribution, accuracy of matching and integration strategy, respectively. Finally, 20 trails, as a traing set, are applied to experiment of U maze of mouse. The result demonstrates that the accuracy rate of the classification method is about 97%.