电子与信息学报
電子與信息學報
전자여신식학보
JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY
2013年
7期
1593-1598
,共6页
徐定杰%沈忱%沈锋
徐定傑%瀋忱%瀋鋒
서정걸%침침%침봉
信号处理%参数估计%卡尔曼滤波%自适应滤波%变分贝叶斯学习
信號處理%參數估計%卡爾曼濾波%自適應濾波%變分貝葉斯學習
신호처리%삼수고계%잡이만려파%자괄응려파%변분패협사학습
Signal processing%Parameters estimation%Kalman filtering%Adaptive filtering%Variational Bayesian learning
针对卡尔曼滤波中观测噪声是有色的且随时间变化这一情形,该文提出基于变分贝叶斯学习的自适应卡尔曼滤波算法。该算法先利用差分法,将时变噪声模型当中的有色观测噪声进行白化处理,从而使模型转换成了过程噪声与观测噪声相关的白噪声模型。考虑噪声相关条件下的卡尔曼滤波,并使之与变分贝叶斯学习结合,将白噪声方差与系统状态变量一起作为参数进行联合的递推估计。仿真结果表明,该自适应算法对时变的噪声具有较好的跟踪效果,相对经典卡尔曼滤波有着较高的滤波精度,最终得到时变有色观测噪声下的状态估计。
針對卡爾曼濾波中觀測譟聲是有色的且隨時間變化這一情形,該文提齣基于變分貝葉斯學習的自適應卡爾曼濾波算法。該算法先利用差分法,將時變譟聲模型噹中的有色觀測譟聲進行白化處理,從而使模型轉換成瞭過程譟聲與觀測譟聲相關的白譟聲模型。攷慮譟聲相關條件下的卡爾曼濾波,併使之與變分貝葉斯學習結閤,將白譟聲方差與繫統狀態變量一起作為參數進行聯閤的遞推估計。倣真結果錶明,該自適應算法對時變的譟聲具有較好的跟蹤效果,相對經典卡爾曼濾波有著較高的濾波精度,最終得到時變有色觀測譟聲下的狀態估計。
침대잡이만려파중관측조성시유색적차수시간변화저일정형,해문제출기우변분패협사학습적자괄응잡이만려파산법。해산법선이용차분법,장시변조성모형당중적유색관측조성진행백화처리,종이사모형전환성료과정조성여관측조성상관적백조성모형。고필조성상관조건하적잡이만려파,병사지여변분패협사학습결합,장백조성방차여계통상태변량일기작위삼수진행연합적체추고계。방진결과표명,해자괄응산법대시변적조성구유교호적근종효과,상대경전잡이만려파유착교고적려파정도,최종득도시변유색관측조성하적상태고계。
An adaptive Kalman filtering algorithm based on variational Bayesian learning is suggested to cope with the problem in which colored and time-varying measurement noise is introduced. By use of differencing, the model is converted back to a normal model in which measurement noise is white but correlated with process noise. Kalman filtering is modified owing to the correlation and variational Bayesian learning is combined to jointly estimate the measurement noise and the state in a recursive manner. The simulation results demonstrate that this adaptive algorithm is capable of tracking time-varying noise and provides more accurate state estimation than standard Kalman filtering with colored and time-varying noise.