当代化工
噹代化工
당대화공
CONTEMPORARY CHEMICAL INDUSTRY
2013年
7期
992-995,1002
,共5页
压差%膨胀液化%天然气%调峰型%LNG%改进%优化
壓差%膨脹液化%天然氣%調峰型%LNG%改進%優化
압차%팽창액화%천연기%조봉형%LNG%개진%우화
Differential preesure%Expansion refrigeration%Natural gas%Peak shaving%LNG%Improvement%Optimization
陕京二、三线、西一线、中亚管道、西二线相继投产以及西三线全面开工,国内输气管道操作压力等级越来越高。沿线高压管道与城市配气管网之间存在很大压差,在调峰型 LNG 站中利用压差膨胀制冷液化天然气是一种经济利用压力能方案。对国内现存的一种管道天然气液化装置分析,发现存在不合理性并对其改进,改进后流程能够适应各种压差(>3.0~3.5 MPa)特别是克服了当压力大于临界压力时不能正常有效工作的缺陷。同时对改进的管道天然气液化装置进行研究分析,得出该装置的关键参数(如:分流器分流比、膨胀机膨胀压力、低温天然气温度等)对整个液化率的影响。最后对改进的管道天然气液化装置优化分析得出各物流参数并且液化率达到19.86%。由此可见改进的管道液化天然气装置具有充分利用压能、液化率高和适应范围广等优点。
陝京二、三線、西一線、中亞管道、西二線相繼投產以及西三線全麵開工,國內輸氣管道操作壓力等級越來越高。沿線高壓管道與城市配氣管網之間存在很大壓差,在調峰型 LNG 站中利用壓差膨脹製冷液化天然氣是一種經濟利用壓力能方案。對國內現存的一種管道天然氣液化裝置分析,髮現存在不閤理性併對其改進,改進後流程能夠適應各種壓差(>3.0~3.5 MPa)特彆是剋服瞭噹壓力大于臨界壓力時不能正常有效工作的缺陷。同時對改進的管道天然氣液化裝置進行研究分析,得齣該裝置的關鍵參數(如:分流器分流比、膨脹機膨脹壓力、低溫天然氣溫度等)對整箇液化率的影響。最後對改進的管道天然氣液化裝置優化分析得齣各物流參數併且液化率達到19.86%。由此可見改進的管道液化天然氣裝置具有充分利用壓能、液化率高和適應範圍廣等優點。
협경이、삼선、서일선、중아관도、서이선상계투산이급서삼선전면개공,국내수기관도조작압력등급월래월고。연선고압관도여성시배기관망지간존재흔대압차,재조봉형 LNG 참중이용압차팽창제랭액화천연기시일충경제이용압력능방안。대국내현존적일충관도천연기액화장치분석,발현존재불합이성병대기개진,개진후류정능구괄응각충압차(>3.0~3.5 MPa)특별시극복료당압력대우림계압력시불능정상유효공작적결함。동시대개진적관도천연기액화장치진행연구분석,득출해장치적관건삼수(여:분류기분류비、팽창궤팽창압력、저온천연기온도등)대정개액화솔적영향。최후대개진적관도천연기액화장치우화분석득출각물류삼수병차액화솔체도19.86%。유차가견개진적관도액화천연기장치구유충분이용압능、액화솔고화괄응범위엄등우점。
With the construction and production of Shaanxi-Beijing gas pipeline II and Ⅲ, China-Asian gas pipeline, West-East gas pipeline , the second Shaanxi-Beijing and the third West-East gas pipeline ,there is large differential pressure between high pressure trunk line and urban distribution pipeline. It is an economic and sufficient way to utilize differential pressure to liquefy natural gas by expansion refrigeration. In this paper, domestic existing pipe natural gas liquefaction plant was analyzed,it’s found that there were some defects in the liquefaction plant ,then the liquefaction plant was improved. The improved process can adapt to all kinds of differential pressure(>3.0~3.5 MPa), especially when the differential pressure is beyond the critical pressure. At the same time, the improved pipe natural gas process was analyzed. The influence of some essential parameters (such as split ratio, cryogenic gas temperature and pressure) on liquefying rate was investigated. Finally, the improved process was optimized, and the liquefying rate reached 19.86%. The results show that the improved pipeline liquefied natural gas process can make full use of differential pressure, and has a high liquefying rate and strong adaptability to pressure.