农机化研究
農機化研究
농궤화연구
JOURNAL OF AGRICULTURAL MECHANIZATION RESEARCH
2013年
5期
12-15
,共4页
叶片图像%分类识别%特征提取%SVM
葉片圖像%分類識彆%特徵提取%SVM
협편도상%분류식별%특정제취%SVM
leaf image%classification and recognition%feature extraction%SVM
为了提高植物叶片识别与分类的正确率,提出了基于SVM 的识别模型和方法;对叶片图像预处理后,提取并优选10个叶片形状特征参数,用SVM 法进行训练建模并识别。实验结果表明,用线性核函数的 SVM 对木瓜、女贞、三角枫和五角枫4种植物叶片识别的平均准确率在95.8%以上,优于神经网络和 Fisher 判别法,为鉴定植物种类提供了一种快速有效的方法。
為瞭提高植物葉片識彆與分類的正確率,提齣瞭基于SVM 的識彆模型和方法;對葉片圖像預處理後,提取併優選10箇葉片形狀特徵參數,用SVM 法進行訓練建模併識彆。實驗結果錶明,用線性覈函數的 SVM 對木瓜、女貞、三角楓和五角楓4種植物葉片識彆的平均準確率在95.8%以上,優于神經網絡和 Fisher 判彆法,為鑒定植物種類提供瞭一種快速有效的方法。
위료제고식물협편식별여분류적정학솔,제출료기우SVM 적식별모형화방법;대협편도상예처리후,제취병우선10개협편형상특정삼수,용SVM 법진행훈련건모병식별。실험결과표명,용선성핵함수적 SVM 대목과、녀정、삼각풍화오각풍4충식물협편식별적평균준학솔재95.8%이상,우우신경망락화 Fisher 판별법,위감정식물충류제공료일충쾌속유효적방법。
To improve the correct rate of identification and classification of plant leaves , a model and method based on SVM was proposed.After pre-processing the leaves image, extraction,and preferably 10 leaf shape characteristic parame-ters was extracted,then use SVM method to train model and identify leaves .The results show that the linear kernel SVM has average accuracy above 95.8% for four plant leaves of papaya , privet, trident maple, acer mono,which is better than neural network and Fisher discriminant method .This research provides a fast and effective method for the identifica-tion of plant species.