农机化研究
農機化研究
농궤화연구
JOURNAL OF AGRICULTURAL MECHANIZATION RESEARCH
2013年
5期
204-207
,共4页
草莓%糖度%近红外%最小二乘支持向量机%反向传播人工神经网络%潜在变量
草莓%糖度%近紅外%最小二乘支持嚮量機%反嚮傳播人工神經網絡%潛在變量
초매%당도%근홍외%최소이승지지향량궤%반향전파인공신경망락%잠재변량
strawberry%soluble solid content%near infrared spectroscopy%Least squares-support vector machine%back propagation-artificial neural networks%latent variables
为了提高草莓糖度近红外光谱定量模型的性能,采用偏最小二乘法提取的潜在变量作为最小二乘—支持向量机和反向传播人工神经网络的输入变量,建立了草莓糖度的近红外定量模型,并与偏最小二乘模型结果进行了比较,建模所使用的光谱范围为6000~9000 cm-1。结果表明,所建立的最小二乘—支持向量机和反向传播人工神经网络定量模型的校正性能、预测性能和稳定性均优于偏最小二乘定量模型,最优模型为前10个潜在变量得分作为输入变量的最小二乘—支持向量机模型,其校正和预测相关系数分别为0.957和0.951,校正和预测均方根误差分别为0.279%和0.272%,剩余预测偏差为3.23,与以往研究文献相比,获得了较为理想的预测精度和稳定性能。
為瞭提高草莓糖度近紅外光譜定量模型的性能,採用偏最小二乘法提取的潛在變量作為最小二乘—支持嚮量機和反嚮傳播人工神經網絡的輸入變量,建立瞭草莓糖度的近紅外定量模型,併與偏最小二乘模型結果進行瞭比較,建模所使用的光譜範圍為6000~9000 cm-1。結果錶明,所建立的最小二乘—支持嚮量機和反嚮傳播人工神經網絡定量模型的校正性能、預測性能和穩定性均優于偏最小二乘定量模型,最優模型為前10箇潛在變量得分作為輸入變量的最小二乘—支持嚮量機模型,其校正和預測相關繫數分彆為0.957和0.951,校正和預測均方根誤差分彆為0.279%和0.272%,剩餘預測偏差為3.23,與以往研究文獻相比,穫得瞭較為理想的預測精度和穩定性能。
위료제고초매당도근홍외광보정량모형적성능,채용편최소이승법제취적잠재변량작위최소이승—지지향량궤화반향전파인공신경망락적수입변량,건립료초매당도적근홍외정량모형,병여편최소이승모형결과진행료비교,건모소사용적광보범위위6000~9000 cm-1。결과표명,소건립적최소이승—지지향량궤화반향전파인공신경망락정량모형적교정성능、예측성능화은정성균우우편최소이승정량모형,최우모형위전10개잠재변량득분작위수입변량적최소이승—지지향량궤모형,기교정화예측상관계수분별위0.957화0.951,교정화예측균방근오차분별위0.279%화0.272%,잉여예측편차위3.23,여이왕연구문헌상비,획득료교위이상적예측정도화은정성능。
In order to improve performance of near infrared spectroscopy (NIR) models for quantitative analysis of solu-ble solid content (SSC) in strawberry, Least squares-support vector machine (LS-SVM) and back propagation-artifi-cial neural networks (BP-ANN) with latent variables (LVs), extracted by partial least squares (PLS), as input were used to establish calibration models.And the performance were compared with PLS models .The spectral region used was 6000-9000 cm-1 .BP-ANN and LS-SVM models were superior to PLS model in calibration , prediction and robustness . Optimal models were obtained by LS-SVM with the first 10 LVs as input.The correlation coefficients and root mean square error of calibration and prediction were 0.957, 0.951, 0.279%and 0.272%, and the residual predictive devia-tion was 3.23, which were more satisfied in prediction accuracy and robustness than results reported by previous works . The results indicate that with LVs as input nonlinear methods of LS-SVM and BP-ANN offers more effective quantitative capability for SSC in strawberry .