农机化研究
農機化研究
농궤화연구
JOURNAL OF AGRICULTURAL MECHANIZATION RESEARCH
2013年
8期
30-34
,共5页
乔永亮%何东健%赵川源%唐晶磊
喬永亮%何東健%趙川源%唐晶磊
교영량%하동건%조천원%당정뢰
玉米%杂草%多光谱图像%主成分分析%SVM%形态学
玉米%雜草%多光譜圖像%主成分分析%SVM%形態學
옥미%잡초%다광보도상%주성분분석%SVM%형태학
corn%weeds%multi-spectral images%principal component analysis%the SVM%morphological
为解决变量喷洒对杂草识别速度与正确率的要求,提出了一种基于多光谱图像和SVM 的杂草识别新方法。通过多光谱成像仪获得玉米与杂草图像,采用 IR-R 的多光谱融合并结合 Otsu 分割法完成背景分割;随后对植被图像进行目标分割与形态学处理,提取出所有植被叶片图像,在此基础上提取了叶片11个形状特征参数和纹理特征参数。为提高算法的实时性,对叶片的特征参数进行主成分分析,将前3个主成分作为支持向量机的输入建立模式识别模型。结果表明,降维后对于未知预测样本的识别正确率达到85%,用时0.001415 s。与直接利用支持向量机的90%的识别率和0.105165 s的用时相比,该算法在满足识别率的同时,用时更少,为田间杂草的快速识别提供了一种新方法。
為解決變量噴灑對雜草識彆速度與正確率的要求,提齣瞭一種基于多光譜圖像和SVM 的雜草識彆新方法。通過多光譜成像儀穫得玉米與雜草圖像,採用 IR-R 的多光譜融閤併結閤 Otsu 分割法完成揹景分割;隨後對植被圖像進行目標分割與形態學處理,提取齣所有植被葉片圖像,在此基礎上提取瞭葉片11箇形狀特徵參數和紋理特徵參數。為提高算法的實時性,對葉片的特徵參數進行主成分分析,將前3箇主成分作為支持嚮量機的輸入建立模式識彆模型。結果錶明,降維後對于未知預測樣本的識彆正確率達到85%,用時0.001415 s。與直接利用支持嚮量機的90%的識彆率和0.105165 s的用時相比,該算法在滿足識彆率的同時,用時更少,為田間雜草的快速識彆提供瞭一種新方法。
위해결변량분쇄대잡초식별속도여정학솔적요구,제출료일충기우다광보도상화SVM 적잡초식별신방법。통과다광보성상의획득옥미여잡초도상,채용 IR-R 적다광보융합병결합 Otsu 분할법완성배경분할;수후대식피도상진행목표분할여형태학처리,제취출소유식피협편도상,재차기출상제취료협편11개형상특정삼수화문리특정삼수。위제고산법적실시성,대협편적특정삼수진행주성분분석,장전3개주성분작위지지향량궤적수입건립모식식별모형。결과표명,강유후대우미지예측양본적식별정학솔체도85%,용시0.001415 s。여직접이용지지향량궤적90%적식별솔화0.105165 s적용시상비,해산법재만족식별솔적동시,용시경소,위전간잡초적쾌속식별제공료일충신방법。
To solve the requirement of variable spray for weed identification speed and accuracy rate , proposed a new method based on multi-spectral images and SVM weed identification .By the corn and weed images of multi-spectral im-age , IR-R multi-spectral fusion and combination of Otsu segmentation method was used to complete the background seg -mentation .Then vegetation image object segmentation and morphological processing was taken before extract all the vege -tation leaf images .Based on this , 11 leaf characteristic parameters of shape and texture was extracted .To improve the real-time , principal component analysis was taken for the characteristic parameters of leaves , and the first-three princi-pal components was taken as input of support vector machines to establish pattern recognition model .The results showed that 85%recognition accuracy for unknown prediction samples after dimensionality reduction , with a time of 0.001 415s, compared with recognition rate of 90%and 0 .105 165 s of the direct use the support vector machine .The algorithms cost a little more time to meet the require recognition accuracy , and provides a new method for the rapid identification of weed .