计算机工程与应用
計算機工程與應用
계산궤공정여응용
COMPUTER ENGINEERING AND APPLICATIONS
2013年
16期
168-171,224
,共5页
古丽热娜·阿布里孜%库尔班·吾布力%卡米力·木依丁%艾斯卡尔·艾木都拉
古麗熱娜·阿佈裏孜%庫爾班·吾佈力%卡米力·木依丁%艾斯卡爾·艾木都拉
고려열나·아포리자%고이반·오포력%잡미력·목의정%애사잡이·애목도랍
维吾尔文%签名识别%方向特征%局部中心点特征%K-NN分类器
維吾爾文%籤名識彆%方嚮特徵%跼部中心點特徵%K-NN分類器
유오이문%첨명식별%방향특정%국부중심점특정%K-NN분류기
Uyghur%signature recognition%directional feature%central point local feature%K-NN classfier
对维吾尔文手写签名图像进行二值化、去噪、归一化和细化等预处理的基础上,结合维吾尔文手写签名的结构与书写风格,对每幅签名图像进行金字塔式分辨率子图像切分,对高分辨率层抽取了共16维方向特征,对低分辨率层则抽取了共32维局部中心点特征。基于这两种特征的签名识别率分别为95.50%和90.50%。为了进一步提高识别率,又对两种特征进行了融合,结果识别率提升到了98.50%。对比分析了基于欧式距离和卡方距离度量方法对识别率的影响,确定最佳度量方法。
對維吾爾文手寫籤名圖像進行二值化、去譟、歸一化和細化等預處理的基礎上,結閤維吾爾文手寫籤名的結構與書寫風格,對每幅籤名圖像進行金字塔式分辨率子圖像切分,對高分辨率層抽取瞭共16維方嚮特徵,對低分辨率層則抽取瞭共32維跼部中心點特徵。基于這兩種特徵的籤名識彆率分彆為95.50%和90.50%。為瞭進一步提高識彆率,又對兩種特徵進行瞭融閤,結果識彆率提升到瞭98.50%。對比分析瞭基于歐式距離和卡方距離度量方法對識彆率的影響,確定最佳度量方法。
대유오이문수사첨명도상진행이치화、거조、귀일화화세화등예처리적기출상,결합유오이문수사첨명적결구여서사풍격,대매폭첨명도상진행금자탑식분변솔자도상절분,대고분변솔층추취료공16유방향특정,대저분변솔층칙추취료공32유국부중심점특정。기우저량충특정적첨명식별솔분별위95.50%화90.50%。위료진일보제고식별솔,우대량충특정진행료융합,결과식별솔제승도료98.50%。대비분석료기우구식거리화잡방거리도량방법대식별솔적영향,학정최가도량방법。
In this paper, on the basis of preprocessing procedures such as binarization, noise removing, normalization and thin-ning, each Uyghur handwritten signature image is segmented into several sub images with Pyramid resolution to combined with the structure and writing style of the signature, the 16-dementional directional features are extracted in higher resolution layer, while 32-dementional local central point features are extracted in the lower resolution layer. 95.5% and 90.5% of recognition rates are obtained using the two features. In order to further improve the recognition rate, the two features are combined togeth-er, and then the recognition rate is increased up to 98.5%. The effectiveness of Euclidean distance and Chi-square distance based measurement methods to the recognition rates are also analyzed, and it is confirmed that Chi-square distance is the best measure-ment method in this paper.