计算机工程与应用
計算機工程與應用
계산궤공정여응용
COMPUTER ENGINEERING AND APPLICATIONS
2013年
16期
146-150
,共5页
聚类%人工蜂群算法%粒计算%K-medoids
聚類%人工蜂群算法%粒計算%K-medoids
취류%인공봉군산법%립계산%K-medoids
clustering%Artificial Bee Colony(ABC)%granular computing%K-medoids
针对传统K-medoids聚类算法初始聚类中心选择较敏感、聚类效率和精度较低、全局搜索能力较差以及传统蜂群算法初始蜂群和搜索步长随机选取等缺点,提出了一种基于粒子和最大最小距离法初始化蜂群和随着迭代次数增加动态调整搜索步长的人工蜂群算法,将改进的人工蜂群进一步优化K-medoids,以提高聚类算法的性能。实验结果表明:该算法降低了对噪声的敏感程度,具有较高的效率和准确率,较强的稳定性。
針對傳統K-medoids聚類算法初始聚類中心選擇較敏感、聚類效率和精度較低、全跼搜索能力較差以及傳統蜂群算法初始蜂群和搜索步長隨機選取等缺點,提齣瞭一種基于粒子和最大最小距離法初始化蜂群和隨著迭代次數增加動態調整搜索步長的人工蜂群算法,將改進的人工蜂群進一步優化K-medoids,以提高聚類算法的性能。實驗結果錶明:該算法降低瞭對譟聲的敏感程度,具有較高的效率和準確率,較彊的穩定性。
침대전통K-medoids취류산법초시취류중심선택교민감、취류효솔화정도교저、전국수색능력교차이급전통봉군산법초시봉군화수색보장수궤선취등결점,제출료일충기우입자화최대최소거리법초시화봉군화수착질대차수증가동태조정수색보장적인공봉군산법,장개진적인공봉군진일보우화K-medoids,이제고취류산법적성능。실험결과표명:해산법강저료대조성적민감정도,구유교고적효솔화준학솔,교강적은정성。
Due to the disadvantages such as sensitivity to the initial selection of the center, low clustering efficiency and accuracy and the poor global search ability in traditional K-medoids clustering algorithm, and the random selection of initial swarm and search step in traditional colony algorithm and so on, this paper proposes a new Artificial Bee Colony algorithm in which the initialization of bee colony is based on granules and maximum minimum distance method and the adjustment of search step is dynamic with iteration number increasing. This paper will further optimize K-medoids to improve the performance of the clustering algorithm. The results of experiments show that this algorithm can reduce the sensitive degree of the noise, has high accuracy and efficiency, strong stability.