电力系统保护与控制
電力繫統保護與控製
전력계통보호여공제
POWER SYSTM PROTECTION AND CONTROL
2013年
16期
108-114
,共7页
王元章%吴春华%周笛青%付立%李智华
王元章%吳春華%週笛青%付立%李智華
왕원장%오춘화%주적청%부립%리지화
BP神经网络%光伏阵列%故障诊断%L-M算法
BP神經網絡%光伏陣列%故障診斷%L-M算法
BP신경망락%광복진렬%고장진단%L-M산법
BP neural network%PV array%fault diagnosis%L-M algorithm
光伏阵列多安装在较恶劣的室外环境中,因此在运行过程中常会发生故障。为辨别光伏阵列故障类型,提出了基于L-M 算法的 BP 神经网络的故障诊断方法。在深入分析不同故障状态下光伏阵列输出量变化规律的基础上,确定了故障诊断模型的输入变量。本方法无需额外的设备支持,具有简便、成本低的优点;可以在线实时地进行故障诊断。仿真和初步实验结果验证了基于BP神经网络的故障诊断方法可以有效地检测出光伏阵列短路、断路、异常老化及局部阴影等四种故障。
光伏陣列多安裝在較噁劣的室外環境中,因此在運行過程中常會髮生故障。為辨彆光伏陣列故障類型,提齣瞭基于L-M 算法的 BP 神經網絡的故障診斷方法。在深入分析不同故障狀態下光伏陣列輸齣量變化規律的基礎上,確定瞭故障診斷模型的輸入變量。本方法無需額外的設備支持,具有簡便、成本低的優點;可以在線實時地進行故障診斷。倣真和初步實驗結果驗證瞭基于BP神經網絡的故障診斷方法可以有效地檢測齣光伏陣列短路、斷路、異常老化及跼部陰影等四種故障。
광복진렬다안장재교악렬적실외배경중,인차재운행과정중상회발생고장。위변별광복진렬고장류형,제출료기우L-M 산법적 BP 신경망락적고장진단방법。재심입분석불동고장상태하광복진렬수출량변화규률적기출상,학정료고장진단모형적수입변량。본방법무수액외적설비지지,구유간편、성본저적우점;가이재선실시지진행고장진단。방진화초보실험결과험증료기우BP신경망락적고장진단방법가이유효지검측출광복진렬단로、단로、이상노화급국부음영등사충고장。
Because PV arrays are always installed in poor outdoor environment, a variety of faults often occur during the operation. In order to obtain the types of fault, a fault diagnosis method of the BP neural network based on L-M algorithm is proposed. Through the in-depth analysis of the output of the PV array under normal state and fault states, the input variables of the diagnosis model are obtained. Compared with other fault diagnosis methods for the PV array, the proposed method does not need additional equipments, so the cost is reduced and the system can be run online and real-time. Finally, the simulation and experimental results show that the fault diagnosis method for the PV array based on the BP neural network can effectively detect four types of fault for PV array such as short-circuit, open-circuit, abnormal degradation and partial shading.