红外与激光工程
紅外與激光工程
홍외여격광공정
INFRARED AND LASER ENGINEERING
2014年
4期
1332-1337
,共6页
水平集%C-V算法%分层%建筑物分割
水平集%C-V算法%分層%建築物分割
수평집%C-V산법%분층%건축물분할
level set%C-V algorithm%multi-layer%building segmentation
针对高分辨率遥感图像,结合建筑物特征,提出水平集分层模型分割图像中的建筑物。首先,学习植被样本得到其在HSV空间中色调与饱和度的联合分布函数,利用阴影灰度方差通常小于非阴影区域的特点,将植被和阴影剔除以简化背景利于后续分割。然后,根据灰度级高低将一幅图像看作多层图像层,把建筑物的屋顶灰度特征和边缘特征融合到传统Chan-Vese(C-V)水平集算法中,分割出每层中灰度级相似的建筑物候选区域,从而将不同灰度级建筑物候选区域分层分割出来再整合。最后利用建筑物面积、建筑物与阴影位置关系等先验知识排除误分割,得到最终结果。实验表明:该方法能更好地分割出形状各异、各个灰度级的建筑物,甚至是灰度不均匀的建筑物,分割漏检率较传统C-V法降低了25%,虚检率降低了22%。有效减少了漏分割和过分割。
針對高分辨率遙感圖像,結閤建築物特徵,提齣水平集分層模型分割圖像中的建築物。首先,學習植被樣本得到其在HSV空間中色調與飽和度的聯閤分佈函數,利用陰影灰度方差通常小于非陰影區域的特點,將植被和陰影剔除以簡化揹景利于後續分割。然後,根據灰度級高低將一幅圖像看作多層圖像層,把建築物的屋頂灰度特徵和邊緣特徵融閤到傳統Chan-Vese(C-V)水平集算法中,分割齣每層中灰度級相似的建築物候選區域,從而將不同灰度級建築物候選區域分層分割齣來再整閤。最後利用建築物麵積、建築物與陰影位置關繫等先驗知識排除誤分割,得到最終結果。實驗錶明:該方法能更好地分割齣形狀各異、各箇灰度級的建築物,甚至是灰度不均勻的建築物,分割漏檢率較傳統C-V法降低瞭25%,虛檢率降低瞭22%。有效減少瞭漏分割和過分割。
침대고분변솔요감도상,결합건축물특정,제출수평집분층모형분할도상중적건축물。수선,학습식피양본득도기재HSV공간중색조여포화도적연합분포함수,이용음영회도방차통상소우비음영구역적특점,장식피화음영척제이간화배경리우후속분할。연후,근거회도급고저장일폭도상간작다층도상층,파건축물적옥정회도특정화변연특정융합도전통Chan-Vese(C-V)수평집산법중,분할출매층중회도급상사적건축물후선구역,종이장불동회도급건축물후선구역분층분할출래재정합。최후이용건축물면적、건축물여음영위치관계등선험지식배제오분할,득도최종결과。실험표명:해방법능경호지분할출형상각이、각개회도급적건축물,심지시회도불균균적건축물,분할루검솔교전통C-V법강저료25%,허검솔강저료22%。유효감소료루분할화과분할。
Towards high resolution remote sensing images, combining with features of buildings, a novel method to extract buildings based on multi-layer level set framework was proposed. Firstly, as far as the impact of shadow and vegetation was concerned, it should be removed on the basis of the separation of gray value thresh and the joint distribution of hue and saturation. Then, an improved C-V level set segmentation algorithm combining with building features of roof′s gray and obvious boundaries was applied to extract building regions of similar gray-scales on each gray layer, and thus all building regions of different gray-scales could be extracted layer by layer, followed by layers of segmented regions integration. Finally, the non-building regions were excluded by using normal areas of buildings and related position between buildings and shadows. The experiment results demonstrate that, compared with the traditional level set methods, this one can detect each single building of gray heterogeneity and buildings of multiple shapes and different gray-scales. Meanwhile, compared to the traditional C-V method, it largely reduces the leakage segmentation ratio by 25% and over-segmentation by 22%.