佳木斯大学学报(自然科学版)
佳木斯大學學報(自然科學版)
가목사대학학보(자연과학판)
JOURNAL OF JIAMUSI UNIVERSITY (NATURAL SCIENCE EDITION)
2014年
2期
274-277
,共4页
宋金波%张剑风%宋衍茹
宋金波%張劍風%宋衍茹
송금파%장검풍%송연여
水淹层%最小二乘支持向量机%低孔低渗油藏%测井解释%模式识别
水淹層%最小二乘支持嚮量機%低孔低滲油藏%測井解釋%模式識彆
수엄층%최소이승지지향량궤%저공저삼유장%측정해석%모식식별
water-flooded layer%least square support vector machine%low porosity -low permeability reservoirs%logging description%pattern recognition
大庆西部外围低孔低渗泥质砂岩泥质含量重、储层厚度薄,水淹层测井响应特征不明显,常规人工经验性解释已不能满足实际开发需要.根据油水性质在测井资料表现上的不同,选取有效表征油水性质的独立测井参数,基于最小二乘支持向量机理论,建立分类器进行油水性质识别分析.以工区现有测试资料的层位作为训练样本进行训练,建立不同水淹级别储层的分类器,并验证分类器精度及有效性,从而对油田生产的待识别油水层进行识别分析.通过对工区的样本学习和预测,并与实际试油资料进行对比,符合率达到92.2%,结果表明,最小二乘支持向量机在低孔低渗薄互层水淹层中可获得良好应用.
大慶西部外圍低孔低滲泥質砂巖泥質含量重、儲層厚度薄,水淹層測井響應特徵不明顯,常規人工經驗性解釋已不能滿足實際開髮需要.根據油水性質在測井資料錶現上的不同,選取有效錶徵油水性質的獨立測井參數,基于最小二乘支持嚮量機理論,建立分類器進行油水性質識彆分析.以工區現有測試資料的層位作為訓練樣本進行訓練,建立不同水淹級彆儲層的分類器,併驗證分類器精度及有效性,從而對油田生產的待識彆油水層進行識彆分析.通過對工區的樣本學習和預測,併與實際試油資料進行對比,符閤率達到92.2%,結果錶明,最小二乘支持嚮量機在低孔低滲薄互層水淹層中可穫得良好應用.
대경서부외위저공저삼니질사암니질함량중、저층후도박,수엄층측정향응특정불명현,상규인공경험성해석이불능만족실제개발수요.근거유수성질재측정자료표현상적불동,선취유효표정유수성질적독립측정삼수,기우최소이승지지향량궤이론,건립분류기진행유수성질식별분석.이공구현유측시자료적층위작위훈련양본진행훈련,건립불동수엄급별저층적분류기,병험증분류기정도급유효성,종이대유전생산적대식별유수층진행식별분석.통과대공구적양본학습화예측,병여실제시유자료진행대비,부합솔체도92.2%,결과표명,최소이승지지향량궤재저공저삼박호층수엄층중가획득량호응용.
Logging response characteristics were complex and not obvious in thin water -flooded layer with high mud and low porosity -low permeability reservoirs in Daqing oilfield .Conventional artificial explana-tion can not satisfy the requirements of development .The theory of classification of support vector machine was used to select relative independent logging parameters for recognizing the fluid properties of low porosity -low permeability reservoirs .The tested fluid properties of layer were used as samples for training .The classifiers of different fluid properties of layers and corresponding support vector machine and its classification were estab -lished .By building up the classifier and its function , recognized layers were analyzed .This model were used to predict layer oiliness and compare with tested fluid properties of layers in some Oilfield .The accuracy of identifi-cation is 92 .2%.The result represented that LSSVM can perfectly resolve identification problem of complex wa-ter-flooded layers .