红外与激光工程
紅外與激光工程
홍외여격광공정
INFRARED AND LASER ENGINEERING
2014年
4期
1265-1271
,共7页
刘明博%唐延林%李晓利%楼佳
劉明博%唐延林%李曉利%樓佳
류명박%당연림%리효리%루가
连续投影算法%有效波长%可见-近红外光谱%光谱预处理%氮含量监测
連續投影算法%有效波長%可見-近紅外光譜%光譜預處理%氮含量鑑測
련속투영산법%유효파장%가견-근홍외광보%광보예처리%담함량감측
successive projections algorithm%effective wavelength%visible-NIR spectrum%spectrum
使用5段移动平滑法、基线校正、光谱面积归一化、多元散射校正方法对水稻叶片可见-近红外光谱进行预处理,使用连续投影算法( SPA)进行有效波长的选取。分别基于光谱指数RVI、NDVI建立多元线性回归(MLR)模型,基于SPA有效波长建立MLR模型,基于全部波长建立主成分回归(PCR)及偏最小二乘法(PLS)回归模型。利用模型预测水稻叶片氮含量,对比发现基于SPA有效波长建立的模型的预测效果明显好于基于光谱指数RVI及NDVI建立的模型,略差于基于全部波长建立的PCR及PLS模型。基于MSC预处理光谱及SPA有效波长建立的模型预测集预测结果r=0.7943,RMSE=0.4558。在水稻叶片氮含量光谱监测中使用连续投影算法进行有效波长的选取是可行的。
使用5段移動平滑法、基線校正、光譜麵積歸一化、多元散射校正方法對水稻葉片可見-近紅外光譜進行預處理,使用連續投影算法( SPA)進行有效波長的選取。分彆基于光譜指數RVI、NDVI建立多元線性迴歸(MLR)模型,基于SPA有效波長建立MLR模型,基于全部波長建立主成分迴歸(PCR)及偏最小二乘法(PLS)迴歸模型。利用模型預測水稻葉片氮含量,對比髮現基于SPA有效波長建立的模型的預測效果明顯好于基于光譜指數RVI及NDVI建立的模型,略差于基于全部波長建立的PCR及PLS模型。基于MSC預處理光譜及SPA有效波長建立的模型預測集預測結果r=0.7943,RMSE=0.4558。在水稻葉片氮含量光譜鑑測中使用連續投影算法進行有效波長的選取是可行的。
사용5단이동평활법、기선교정、광보면적귀일화、다원산사교정방법대수도협편가견-근홍외광보진행예처리,사용련속투영산법( SPA)진행유효파장적선취。분별기우광보지수RVI、NDVI건립다원선성회귀(MLR)모형,기우SPA유효파장건립MLR모형,기우전부파장건립주성분회귀(PCR)급편최소이승법(PLS)회귀모형。이용모형예측수도협편담함량,대비발현기우SPA유효파장건립적모형적예측효과명현호우기우광보지수RVI급NDVI건립적모형,략차우기우전부파장건립적PCR급PLS모형。기우MSC예처리광보급SPA유효파장건립적모형예측집예측결과r=0.7943,RMSE=0.4558。재수도협편담함량광보감측중사용련속투영산법진행유효파장적선취시가행적。
5 segments moving average, baseline correction, area normalization, and multiplicative scatter correction (MSC) was used to preprocess Visible-NIR reflective spectrum of rice leaf. Successive projection algorithm (SPA) was used in the selecting of effective wavelengths. Multiple linear regression (MLR) models were built based on spectral indexes of RVI, NDVI and effective wavelengths selected by S PA. Principal components regression (PCR) models and Partial least squares regression (PLS) models were built based on all wavelengths in the spectrum. Nitrogen contents of rice leaves were predicted by these models. From comparison, It was found that the predictive validity of models based on SPA effective wavelengths were obviously better than models based on spectral indexes of RVI and NDVI, and slightly worse than PCR and PLS models based on all wavelengths in the spectrum. Models based on MSC preprocessed spectrum and SPA effective wavelengths has the predictive validity of r=0.794 3, RMSE=0.455 8. It is feasible to use successive projections algorithm in spectral monitoring of rice leaves nitrogen contents.