红外与激光工程
紅外與激光工程
홍외여격광공정
INFRARED AND LASER ENGINEERING
2014年
4期
1260-1264
,共5页
波段重构%波段采样%压缩感知%高光谱图像
波段重構%波段採樣%壓縮感知%高光譜圖像
파단중구%파단채양%압축감지%고광보도상
band reconstruction%band sampling%compressed sensing%hyperspectral image
针对高光谱图像数据量大、信息冗余多、传输难度大等问题,从波段压缩采样入手,通过采样数据重构出原始波段,提出一种基于压缩感知理论的波段重构方法。压缩感知理论是一种在不遵循奈奎斯特采样定理的情况下,能够高精度重构出原始信号的新型压缩采样理论。由于高光谱图像谱间相关性高,具有很强的稀疏性,故可将压缩感知理论用于高光谱数据的波段重构,仅选择少量波段,便能够重构得到原始高光谱数据。实验结果表明,压缩感知理论能够对高光谱图像波段维进行压缩与重构,并可达到较高的重构比例,同时获得较高的重构效率,且重构数据光谱曲线与原始数据光谱曲线的波形一致度高。
針對高光譜圖像數據量大、信息冗餘多、傳輸難度大等問題,從波段壓縮採樣入手,通過採樣數據重構齣原始波段,提齣一種基于壓縮感知理論的波段重構方法。壓縮感知理論是一種在不遵循奈奎斯特採樣定理的情況下,能夠高精度重構齣原始信號的新型壓縮採樣理論。由于高光譜圖像譜間相關性高,具有很彊的稀疏性,故可將壓縮感知理論用于高光譜數據的波段重構,僅選擇少量波段,便能夠重構得到原始高光譜數據。實驗結果錶明,壓縮感知理論能夠對高光譜圖像波段維進行壓縮與重構,併可達到較高的重構比例,同時穫得較高的重構效率,且重構數據光譜麯線與原始數據光譜麯線的波形一緻度高。
침대고광보도상수거량대、신식용여다、전수난도대등문제,종파단압축채양입수,통과채양수거중구출원시파단,제출일충기우압축감지이론적파단중구방법。압축감지이론시일충재불준순내규사특채양정리적정황하,능구고정도중구출원시신호적신형압축채양이론。유우고광보도상보간상관성고,구유흔강적희소성,고가장압축감지이론용우고광보수거적파단중구,부선택소량파단,편능구중구득도원시고광보수거。실험결과표명,압축감지이론능구대고광보도상파단유진행압축여중구,병가체도교고적중구비례,동시획득교고적중구효솔,차중구수거광보곡선여원시수거광보곡선적파형일치도고。
Hyperspectral image processing had attracted high attention in remote sensing fields. One of the main issues was to address the problem of huge data and hard transmission via sampling and reconstruction. Compressed sensing theory was investigated in this paper for band reconstruction. Based on compressed sensing theory, original signal could be reconstructed efficiently without satisfying the Nyquist-Shannon criterion. Adjacent spectral bands of hyperspectral images were highly correlated, resulting in strong sparse representation. This significant property made it possible to obtain the whole spectrum information from limited bands of original hyperspectral data via compressed sensing theory. Experimental results demonstrate the feasibility and reliability of applying compressed sensing theory for sampling and reconstruction on bands of hyperspectral images. The proposed band reconstruction method can perform high correlation coefficients and low relative errors between a pair of reconstructed and original hyperspectral bands. Simultaneously, high levels of reconstruction efficiency are achieved, and reconstructed spectral curve is in accordance with original data as well.