山东理工大学学报(自然科学版)
山東理工大學學報(自然科學版)
산동리공대학학보(자연과학판)
JOURNAL OF SHANDONG UNIVERSITY OF TECHNOLOGY(SCIENCE AND TECHNOLOGY)
2013年
4期
40-42
,共3页
脉冲%连续变量%振动性
脈遲%連續變量%振動性
맥충%련속변량%진동성
impulse%continuous argument%oscillation
研究了如下具有连续变量的脉冲时滞差分方程x(t)- x(t -τ)+∑m i=1 pi (t)x(t -σi )=0, t ≥0,t ≠ tk x(t+k )- x(tk )= bk x (tk ), k =1,2,?通过构造辅助函数,得到了方程解振动的两个充分条件,推广和改进了已有文献中的某些结果。
研究瞭如下具有連續變量的脈遲時滯差分方程x(t)- x(t -τ)+∑m i=1 pi (t)x(t -σi )=0, t ≥0,t ≠ tk x(t+k )- x(tk )= bk x (tk ), k =1,2,?通過構造輔助函數,得到瞭方程解振動的兩箇充分條件,推廣和改進瞭已有文獻中的某些結果。
연구료여하구유련속변량적맥충시체차분방정x(t)- x(t -τ)+∑m i=1 pi (t)x(t -σi )=0, t ≥0,t ≠ tk x(t+k )- x(tk )= bk x (tk ), k =1,2,?통과구조보조함수,득도료방정해진동적량개충분조건,추엄화개진료이유문헌중적모사결과。
The following impulsive delay difference equation with continuous arguments is considered x(t) - x(t -τ)+ ∑i= 1 pi (t)x(t -σi ) = 0 , t ≥ 0 ,t ≠ tk m x(t+k ) - x(tk ) = bk x (tk ) , k = 1,2,?By constructing the auxiliary functions , the two sufficient conditions for oscillation of the solutions are obtained and some results in the literatures are improved and extended .