计算机技术与发展
計算機技術與髮展
계산궤기술여발전
COMPUTER TECHNOLOGY AND DEVELOPMENT
2014年
6期
170-173
,共4页
样条权函数%神经网络%指纹识别%人工智能%插值
樣條權函數%神經網絡%指紋識彆%人工智能%插值
양조권함수%신경망락%지문식별%인공지능%삽치
spline weight function%neural network%fingerprint recognition%interpolation
样条权函数神经网络克服了很多传统神经网络(如BP、RBF)的缺点:比如局部极小、收敛速度慢等。样条权函数神经网络的拓扑结构简单,训练后的神经网络的权值是输入样本的函数,能够精确记忆训练过的样本,可以很好地反映样本的信息特征,亦可以求得全局最小值。为了克服传统网络在指纹识别中的弊端,文中利用了样条权函数神经网络的优点,介绍了其在指纹识别中的应用。首先通过主成分分析方法对指纹图像进行特征提取,然后利用样条权函数神经网络进行指纹识别,最后通过Matlab仿真与其他传统的神经网络进行比较,验证了样条权函数在指纹识别方面的可行性且比传统神经网络效率更高。
樣條權函數神經網絡剋服瞭很多傳統神經網絡(如BP、RBF)的缺點:比如跼部極小、收斂速度慢等。樣條權函數神經網絡的拓撲結構簡單,訓練後的神經網絡的權值是輸入樣本的函數,能夠精確記憶訓練過的樣本,可以很好地反映樣本的信息特徵,亦可以求得全跼最小值。為瞭剋服傳統網絡在指紋識彆中的弊耑,文中利用瞭樣條權函數神經網絡的優點,介紹瞭其在指紋識彆中的應用。首先通過主成分分析方法對指紋圖像進行特徵提取,然後利用樣條權函數神經網絡進行指紋識彆,最後通過Matlab倣真與其他傳統的神經網絡進行比較,驗證瞭樣條權函數在指紋識彆方麵的可行性且比傳統神經網絡效率更高。
양조권함수신경망락극복료흔다전통신경망락(여BP、RBF)적결점:비여국부겁소、수렴속도만등。양조권함수신경망락적탁복결구간단,훈련후적신경망락적권치시수입양본적함수,능구정학기억훈련과적양본,가이흔호지반영양본적신식특정,역가이구득전국최소치。위료극복전통망락재지문식별중적폐단,문중이용료양조권함수신경망락적우점,개소료기재지문식별중적응용。수선통과주성분분석방법대지문도상진행특정제취,연후이용양조권함수신경망락진행지문식별,최후통과Matlab방진여기타전통적신경망락진행비교,험증료양조권함수재지문식별방면적가행성차비전통신경망락효솔경고。
Spline weight function neural network overcomes many defects of traditional neural networks (like BP,RBF),such as local minima,slow convergence. The topology structure of Spline weight function neural network is very simple, the trained neural network weights are the function of input samples,so it can remember trained samples and accurately reflect the characteristics of the sample infor-mation,and also can be obtained global minimum. In order to overcome the traditional networks' shortcomings in fingerprint identifica-tion,introduce the application in fingerprint recognition with the advantages of the spline weight function neural networks. Firstly extract the feature of the fingerprint images through principal component analysis,and then use the spline weight function neural network to do the fingerprint recognition,finally compare the spline weight function neural network and other traditional neural networks through Matlab simulation to verify the feasibility of spline weight function in fingerprint recognition and it is more efficient than the traditional neural networks.