新型炭材料
新型炭材料
신형탄재료
NEW CARBON MATERIALS
2014年
3期
176-185
,共10页
郝建伟%肇研%罗云烽%王琰%陈达
郝建偉%肇研%囉雲烽%王琰%陳達
학건위%조연%라운봉%왕염%진체
微脱黏%炭纤维%湿热效应%界面剪切强度%有限元分析
微脫黏%炭纖維%濕熱效應%界麵剪切彊度%有限元分析
미탈점%탄섬유%습열효응%계면전절강도%유한원분석
Micro-droplet test%Carbon fibers%Hygrothermal effect%Interfacial strength%Finite element analysis
针对微脱黏测试建立细观力学模型,通过模拟纤维从树脂微滴中的拔出过程评价炭纤维增强双马树脂基复合材料的界面性能。为了深入理解湿热环境对复合材料界面性能的影响,通过微脱黏方法测试不同湿热环境条件下炭纤维增强双马树脂基复合材料的界面剪切强度。结果表明,湿热老化会导致界面剪切强度下降,吸湿达到饱和后界面剪切强度也会趋于稳定。在实验的基础上,基于内聚力界面单元建立脱黏过程的数值模型以表征复合材料的界面特性,评价实验参数与界面特性的关系。微脱黏模型还为宏观力学性能的数值分析提供包括界面相在内的必要的实验参数。微脱黏测试的有限元分析表明刮刀夹持位置、热残余应力以及湿热条件均会对界面应力分布产生影响。
針對微脫黏測試建立細觀力學模型,通過模擬纖維從樹脂微滴中的拔齣過程評價炭纖維增彊雙馬樹脂基複閤材料的界麵性能。為瞭深入理解濕熱環境對複閤材料界麵性能的影響,通過微脫黏方法測試不同濕熱環境條件下炭纖維增彊雙馬樹脂基複閤材料的界麵剪切彊度。結果錶明,濕熱老化會導緻界麵剪切彊度下降,吸濕達到飽和後界麵剪切彊度也會趨于穩定。在實驗的基礎上,基于內聚力界麵單元建立脫黏過程的數值模型以錶徵複閤材料的界麵特性,評價實驗參數與界麵特性的關繫。微脫黏模型還為宏觀力學性能的數值分析提供包括界麵相在內的必要的實驗參數。微脫黏測試的有限元分析錶明颳刀夾持位置、熱殘餘應力以及濕熱條件均會對界麵應力分佈產生影響。
침대미탈점측시건립세관역학모형,통과모의섬유종수지미적중적발출과정평개탄섬유증강쌍마수지기복합재료적계면성능。위료심입리해습열배경대복합재료계면성능적영향,통과미탈점방법측시불동습열배경조건하탄섬유증강쌍마수지기복합재료적계면전절강도。결과표명,습열노화회도치계면전절강도하강,흡습체도포화후계면전절강도야회추우은정。재실험적기출상,기우내취력계면단원건립탈점과정적수치모형이표정복합재료적계면특성,평개실험삼수여계면특성적관계。미탈점모형환위굉관역학성능적수치분석제공포괄계면상재내적필요적실험삼수。미탈점측시적유한원분석표명괄도협지위치、열잔여응력이급습열조건균회대계면응력분포산생영향。
Carbon fiber/bismaleimide composites have received increasing interest, owing to their excellent properties, especially their toughness under extreme working conditions. We established a micromechanical model for a finite element simulation of the micro-droplet test, which involves pulling a carbon fiber out of a bead of matrix using two moving knives acting on the bead as scrapers to quantify the interfacial properties of carbon fiber reinforced bismaleimide composites. The interfacial shear strength of carbon fiber/bismaleimide composites subjected to different hydrothermal environments was tested by micro-droplet method to illus-trate the impact of moisture absorption on their interfacial properties. Hydrothermal aging caused a reduction of interfacial shear strength, which leveled off when the immersion time in water exceeded 7 days at 71℃. A numerical simulation of the debonding process was performed based on the interface cohesive element damage model to simulate the interfacial properties of the composite and to determine the correlation between experimental parameters and interfacial properties. The simulation successfully provided es-sential parameters for numerical analysis of the macroscopic mechanical properties of the composite. Finite element analysis of the micro-droplet test revealed that the factors that influence the interfacial shear stress distribution are the position of the knives on the bead, thermal residual stress and hydrothermal treatment conditions.