催化学报
催化學報
최화학보
CHINESE JOURNAL OF CATALYSIS
2014年
7期
1068-1077
,共10页
姜洪泉%王巧凤%李世洋%李井申%王庆元
薑洪泉%王巧鳳%李世洋%李井申%王慶元
강홍천%왕교봉%리세양%리정신%왕경원
氧化钛%Pr-N-P三元掺杂%溶胶-凝胶%溶剂热%太阳光%光催化
氧化鈦%Pr-N-P三元摻雜%溶膠-凝膠%溶劑熱%太暘光%光催化
양화태%Pr-N-P삼원참잡%용효-응효%용제열%태양광%광최화
Titania%Pr,N,and P tri-doping%Sol-gel%Solvothermal%Sunlight%Photocatalysis
利用溶胶-凝胶和溶剂热联合技术制备了Pr-N-P三元掺杂锐钛矿TiO2(PrNPTO)纳米片,并采用X射线衍射、透射电镜、N2吸附、X射线光电子能谱、UV-vis吸收谱和光致荧光光谱分析技术对其进行了表征.当Pr掺杂量为1.75 wt%,焙烧温度为550°C时,制得的PrNPTO在可见和紫外光下光催化降解亚甲基蓝(MB)活性最佳.在模拟太阳光照射下, PrNPTO也表现出优越的光催化降解4-氯酚性能(kapp =3.90×10-2 min-1),优于未掺杂、单掺杂和双掺杂TiO2样品,其光活性是P25 TiO2的3.33倍(kapp =1.17×10-2 min-1). PrNPTO光活性的提高归因于Pr-N-P三元掺杂增强了紫外和可见光吸收,降低了光生载流子复合,增加了表面羟基以及改善了表面织构特性.在模拟太阳光照射下, PrNPTO光催化效率高且光催化性能稳定,适合于环境净化领域的实际应用..
利用溶膠-凝膠和溶劑熱聯閤技術製備瞭Pr-N-P三元摻雜銳鈦礦TiO2(PrNPTO)納米片,併採用X射線衍射、透射電鏡、N2吸附、X射線光電子能譜、UV-vis吸收譜和光緻熒光光譜分析技術對其進行瞭錶徵.噹Pr摻雜量為1.75 wt%,焙燒溫度為550°C時,製得的PrNPTO在可見和紫外光下光催化降解亞甲基藍(MB)活性最佳.在模擬太暘光照射下, PrNPTO也錶現齣優越的光催化降解4-氯酚性能(kapp =3.90×10-2 min-1),優于未摻雜、單摻雜和雙摻雜TiO2樣品,其光活性是P25 TiO2的3.33倍(kapp =1.17×10-2 min-1). PrNPTO光活性的提高歸因于Pr-N-P三元摻雜增彊瞭紫外和可見光吸收,降低瞭光生載流子複閤,增加瞭錶麵羥基以及改善瞭錶麵織構特性.在模擬太暘光照射下, PrNPTO光催化效率高且光催化性能穩定,適閤于環境淨化領域的實際應用..
이용용효-응효화용제열연합기술제비료Pr-N-P삼원참잡예태광TiO2(PrNPTO)납미편,병채용X사선연사、투사전경、N2흡부、X사선광전자능보、UV-vis흡수보화광치형광광보분석기술대기진행료표정.당Pr참잡량위1.75 wt%,배소온도위550°C시,제득적PrNPTO재가견화자외광하광최화강해아갑기람(MB)활성최가.재모의태양광조사하, PrNPTO야표현출우월적광최화강해4-록분성능(kapp =3.90×10-2 min-1),우우미참잡、단참잡화쌍참잡TiO2양품,기광활성시P25 TiO2적3.33배(kapp =1.17×10-2 min-1). PrNPTO광활성적제고귀인우Pr-N-P삼원참잡증강료자외화가견광흡수,강저료광생재류자복합,증가료표면간기이급개선료표면직구특성.재모의태양광조사하, PrNPTO광최화효솔고차광최화성능은정,괄합우배경정화영역적실제응용..
Pr, N, and P tri-doped anatase TiO2 nanosheets (PrNPTO) were synthesized by a combined sol-gel solvothermal method and characterized by X-ray diffraction, transmission electron microscopy, N2 adsorption-desorption, X-ray photoelectron spectroscopy, UV-vis absorbance spectroscopy, and photoluminescence spectroscopy. When the Pr-doping concentration was 1.75 wt% and calcination temperature employed was 550 °C, the resulting PrNPTO showed the highest photoactivity towards the degradation of methylene blue under visible and UV light irradiation. PrNPTO also displayed superior photoactivity towards the degradation of 4-chlorophenol under sunlight (kapp = 3.90 × 10-2 min-1) over the non-doped, single-doped, and co-doped samples, and P25 TiO2 (kapp = 1.17 × 10-2 min-1). The high photoactivity of PrNPTO was attributed to the increased UV and visible light ab-sorption properties, reduced recombination of photogenerated carriers, increased surface hydroxyl content, and improved surface textural properties. PrNPTO was highly efficient and stable under simulated sunlight irradiation, which are essential attributes for practical application in environ-ment-related remediation schemes.