中国造船
中國造船
중국조선
SHIPBUILDING OF CHINA
2014年
2期
38-48
,共11页
声学%布局优化%匈牙利算法%声学准则法%舱室声学布局优化
聲學%佈跼優化%匈牙利算法%聲學準則法%艙室聲學佈跼優化
성학%포국우화%흉아리산법%성학준칙법%창실성학포국우화
acoustics%layout optimization%Hungarian algorithm%acoustic criterion%ship cabins acoustic layout optimization
国际海事组织将于2014年采用新的更严格的船舶舱室噪声标准,在船舶总体设计阶段提前进行舱室总体声学布局优化设计是应对新标准的有效手段。船舶舱室总体声学布局优化设计问题研究的目的是如何根据舱室噪声限值指标,合理确定船舶各舱室类型的分布,使舱室声学降噪成本最低。本文通过将优化设计问题转化为指派问题(AP, Assignment Problem)描述,建立了定量化的舱室总体声学布局优化通用数学模型。给出了求解该模型的两种解法。解法一是针对指派问题的标准数学规划模型形式的匈牙利解法;解法二为基于该问题自身特殊性提出的求解该模型的准则法。通过实例,研究了不同约束条件下舱室总体声学布局的优化问题。结果表明,船舶舱室总体声学布局优化通用模型简单有效,两种解法计算结果相同,精度相当,可操作性强,效率高,且两种解法互为补充。
國際海事組織將于2014年採用新的更嚴格的船舶艙室譟聲標準,在船舶總體設計階段提前進行艙室總體聲學佈跼優化設計是應對新標準的有效手段。船舶艙室總體聲學佈跼優化設計問題研究的目的是如何根據艙室譟聲限值指標,閤理確定船舶各艙室類型的分佈,使艙室聲學降譟成本最低。本文通過將優化設計問題轉化為指派問題(AP, Assignment Problem)描述,建立瞭定量化的艙室總體聲學佈跼優化通用數學模型。給齣瞭求解該模型的兩種解法。解法一是針對指派問題的標準數學規劃模型形式的匈牙利解法;解法二為基于該問題自身特殊性提齣的求解該模型的準則法。通過實例,研究瞭不同約束條件下艙室總體聲學佈跼的優化問題。結果錶明,船舶艙室總體聲學佈跼優化通用模型簡單有效,兩種解法計算結果相同,精度相噹,可操作性彊,效率高,且兩種解法互為補充。
국제해사조직장우2014년채용신적경엄격적선박창실조성표준,재선박총체설계계단제전진행창실총체성학포국우화설계시응대신표준적유효수단。선박창실총체성학포국우화설계문제연구적목적시여하근거창실조성한치지표,합리학정선박각창실류형적분포,사창실성학강조성본최저。본문통과장우화설계문제전화위지파문제(AP, Assignment Problem)묘술,건립료정양화적창실총체성학포국우화통용수학모형。급출료구해해모형적량충해법。해법일시침대지파문제적표준수학규화모형형식적흉아리해법;해법이위기우해문제자신특수성제출적구해해모형적준칙법。통과실례,연구료불동약속조건하창실총체성학포국적우화문제。결과표명,선박창실총체성학포국우화통용모형간단유효,량충해법계산결과상동,정도상당,가조작성강,효솔고,차량충해법호위보충。
New strict standards and codes for noise level specification in ships will be adopted in 2014 by IMO (International Marine Organization). It is beneficial to control cabin acoustics performance during the ship overall design. This is the so called cabin acoustic layout optimization design. Rarely research on cabins acoustic layout optimization has been conducted in the past decades. In this paper, acoustics layout optimization problem is transformed into the standard form of assignment problem. A general optimization model for ship cabins acoustics layout optimization, namely how to assign each working/navigation/living space to the ship cabins, is established. Criterion method and the Hungarian algorithm are presented to solve the optimization model. The proposed criterion method is based on two principles: the rearrangement inequality, and the equality of global optimal solution and local optimal solution. The Hungarian algorithm is applied to this model. As examples, the layouts of cabins under different constraints are studied. Optimization results show that the proposed general model and methods are easy to understand and apply efficiently.