纯粹数学与应用数学
純粹數學與應用數學
순수수학여응용수학
PURE AND APPLIED MATHEMATICS
2014年
3期
292-298
,共7页
单调算子%正规锥%不动点%序差对%序差距
單調算子%正規錐%不動點%序差對%序差距
단조산자%정규추%불동점%서차대%서차거
monotone operator%normal cone%fixed point%order difference pair%sequence gaps
利用单调迭代法、数学归纳法以及序差距的性质,在半序Banach 空间中探究不具有紧性、连续性以及任何凹凸性的单调算子不动点存在以及惟一性问题,得出其新不动点定理,这些结果对相关结论进行了推广,使其适用范围更广,同时将该结论应用于求解Volterra型积分方程组问题中。
利用單調迭代法、數學歸納法以及序差距的性質,在半序Banach 空間中探究不具有緊性、連續性以及任何凹凸性的單調算子不動點存在以及惟一性問題,得齣其新不動點定理,這些結果對相關結論進行瞭推廣,使其適用範圍更廣,同時將該結論應用于求解Volterra型積分方程組問題中。
이용단조질대법、수학귀납법이급서차거적성질,재반서Banach 공간중탐구불구유긴성、련속성이급임하요철성적단조산자불동점존재이급유일성문제,득출기신불동점정리,저사결과대상관결론진행료추엄,사기괄용범위경엄,동시장해결론응용우구해Volterra형적분방정조문제중。
In order to explore the existence and uniqueness of monotone operator without compactness, con-tinuity, and any convex conditions fixed points in partially ordered Banach space, the paper uses the monotone iterative method and mathematical induction as well as the properties of the sequence gaps. Then we obtained the new fixed point theorems of it. The results obtained generalize the related conclusion, so that it can be widely applicable scope, Meanwhile the conclusion is applied to solve the problem for Volterra integral equation group.